wdednam
- 33
- 1
Homework Statement
Determine the kinetic energy of a bead of mass m which slides along a frictionless wire bent in the shape of a parabola of equation y = x2. The wire rotates at a constant angular velocity \omega about the y-axis.
Homework Equations
T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + {x}^2\omega^2)
The Attempt at a Solution
The above equation represents my attempt to write down the kinetic energy of the system in an appropriate coordinate system. After this I eliminated \dot{y} in favour of \dot{x} using y = x2 and got:
T = \frac{1}{2}m(\dot{x}^2 + 4{x}^2\dot{x}^2 + {x}^2\omega^2)
Does this look right to anyone? The book (study guide) I'm using was unfortunately compiled by my University and no answers are supplied to end-of-chapter problems. This problem comes out of the first chapter of my study guide and all the problems there basically involves writing down a correct expression for the Lagrangian/Kinetic Energy.
Thanks in advance for any help.