Lagrangian motion (force on a plate)

ponjavic
Messages
221
Reaction score
0
I am trying to solve this problem using lagrangian motion but I have no idea how to use it.

It can be solved using mass conservation and force momentum equation but we are supposed to solve it with continuity.

How would I go about this?

Continuity:

\frac{ Dp }{Dt} = \delta u / \delta x + \delta v / \delta y + \delta w / \delta z

Now the problem is this:

Calculate the drag force acting on the flat 2m wide plate. Outside the viscous region the velocity is uniform. Use density = 1.23kg/m^3

What I can say is that, \frac{ \delta p }{\delta t} = 0

PIC
 

Attachments

  • plate.JPG
    plate.JPG
    9.9 KB · Views: 488
Last edited:
Physics news on Phys.org
Nobody with a clue on this one?

The exact question states:

b) Solve the problem using a control volume with the upper boundary a streamline (no mass flux crosses a streamline)
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top