Laplace transform w/ partial fraction

SpartanArt
Messages
2
Reaction score
0

Homework Statement


solve the following initial value problem using Laplace transforms
y"+2y'+y=(8/3)cos(2t)-2sin(2t)
y(0)=1
y'(0)=7/3


Homework Equations


L[d^2y/dt^2]=s^2Y-sy(0)-y'(0)
L[dy/dt]=sY-y(0)
L[coswt]=s/(s^2+w^2)
L[sinwt]=w/(s^2+w^2)


The Attempt at a Solution



so far: Y={s^3+(13/3)s^2+(20/3)s+(40/3)}/{(s^2+4)(s^2+2s+1)}
need help turning denominator into partial fraction.
Thanks!
 
Physics news on Phys.org
www.quickmath.com - powered by webMathematica: this site is very handy and will do algebra (factoring, simplify, partial fraction decomposition, expand), solve equations/inequalities (single or a system), plot equations/inequalities (single or a system), derivatives, definite or indefinite integrals, and do matrix arithmetic/inverses/determinants.
 
  • Like
Likes 1 person
thanks a lot!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top