Linear Algebra: Equivalence of Linear Transformations

Fringhe
Messages
5
Reaction score
0

Homework Statement


1) two linear transformations B and C are equivalent iff there exist invertible linear transformations P and Q such that PB=CQ
2) if A and B are equivalent then so are A' and B' in dual space
3) Do there exist linear transformations A and B such that A and B are equivalent but A^2 and B^2 are not?
4) Does there exist a linear transformation A such that A is equivalent to a scalar a but A is not equal to a?

The Attempt at a Solution


I really don't know where to start. I know that if two l.ts. A and B are equivalent then (AB)^-1 = B^-1A^-1. But that's where I am now.
 
Last edited:
Physics news on Phys.org
Ok for the first question, two lts B and C are equivalent iff there exist lts E and F such that
B = E^-1 C F
Now let E = P and let F=Q, we have
B= P^-1 C Q or PB = CQ so this means that the lts P and Q must be invertible?
 
Can you please repeat your definition for equivalence between A and B? I'm not sure I follow.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top