Linear Algebra - Matrix Transformations

01KD
Messages
4
Reaction score
0

Homework Statement



Let L denote the line through the origin in R2 that that makes angle -∏ < theta ≤ ∏
with the positive x-axis. The reflection operator that reflects points about L in R2
is the matrix transformation R2 --> R2 with standard matrix

[cos 2(theta) sin 2(theta); sin 2(theta) -cos 2(theta)]

Show that the composition of a rotation operator followed by a re
reflection operator is another reflection operator.

Homework Equations



Standard matrix for reflection in R2 comes to mind;

[cos(theta) -sin(theta); sin (theta) cos (theta)]

These are 2x2 matrices and I'm not sure how to input them here so I put ; to separate the two columns.

The Attempt at a Solution



I'm kind of confused as to how to attempt to solve the question. I mean I could use the 2 standard matrices and use matrix multiplication which gives a really ugly 2x2 that I'm not sure what to do with. Any help to get me started would be appreciated :).
 
Last edited:
Physics news on Phys.org
Anybody? : (
 
It's pretty straight forward isn't it? You know how to write the rotation and reflection as matrices. The "rotation followed by a reflection" is the product of those two matrices. Do that multiplication and show that it is a reflection by determining the appropriate angle for the "line of reflection"?
 
Thanks HallsofIvy! It turns out that I read the question wrong. I just had to use matrix multiplication and simplify. When I did it yesterday, I wasn't sure about how to simplify it. But using trig identities makes it very simple. Thanks again for your help!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top