Mastering Integration Techniques: Tips and Guidance for Complex Integrals

  • Thread starter Thread starter Nyasha
  • Start date Start date
  • Tags Tags
    Integration
Nyasha
Messages
127
Reaction score
0
I am a bit rusty on my integration techniques. Can someone please tell me which integration technique to use for this integral ? I don't want to anyone to solve it for me. I just want to be nudged in the right direction.
 

Attachments

Physics news on Phys.org
How about keeping it simple and just trying u=z^2+p^2?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top