ajhunte
- 12
- 0
The problem asks me to determine the rate of breakdown due to firing 120 kev Electrons at Titanium of arbitrary thickness. I could solve this problem if I knew The average energy deposited per electron, or the Energy efficiency of the entire beam through the titanium.
Given:
Electron Flux (Current)=8.75e16 Electrons per second
Energy of Electrons= 120 keV per Electron
Density of Titanium= 4.506 g per cm^3
Thickness of Titanium= .0254 cm
Surface area of Titanium= 100 cm^2
Is there a formula that accurately describes the attenuation coefficient of electrons (or beta particles) based on the Z (# of protons) of the absorber. I am interested in the average energy deposited per electron or average energy deposited per second.
Given:
Electron Flux (Current)=8.75e16 Electrons per second
Energy of Electrons= 120 keV per Electron
Density of Titanium= 4.506 g per cm^3
Thickness of Titanium= .0254 cm
Surface area of Titanium= 100 cm^2
Is there a formula that accurately describes the attenuation coefficient of electrons (or beta particles) based on the Z (# of protons) of the absorber. I am interested in the average energy deposited per electron or average energy deposited per second.