I will check later. I'm too tired now to say something reasonable, or to read something correctly.
We can assume ##a.b,c > 0## from the start, after the cases ##c=0## (easy) and ##a=0## (prime definition with ##p=2## if ##b=0## or symmetrically ##p=3## if ##a=0##) are done. A solution with a negative number immediately also gets a solution with a positive number, and ##c<0## is impossible.
This leads to ##2r^3+3s^3=t^3## with positive integers ##r,s,t##. That they may be assumed pairwise coprime is again a consequence of primality.
E.g. let us assume a prime ##p## divides ##r## and ##t##. Then
\begin{align*}
p \,|\, 3s^3=t^3-2r^3 & \Longrightarrow p\,|\,3 \text{ or } p\,|\,s^3\\
\text{ (a) }p\,|\,s^3 &\Longrightarrow p\,|\,s\\
&\Longrightarrow p^3\,|\,s^3\\
&\Longrightarrow p^3 \text{ divides every term and can be canceled }\\
\text{ (b) }p\,|\,3&\Longrightarrow p=3\\
&\Longrightarrow s^3= 9\cdot t'^3 - 2\cdot 9\cdot r'^3\\
&\Longrightarrow 3\,|\,s^3\\
&\Longrightarrow 3\,|\,s\\
&\Longrightarrow 3^3\,|\,s^3\\
&\Longrightarrow 3^3 \text{ divides every term and can be canceled }
\end{align*}
This is the way primality is normally used. Here it allows us to assume that ##r,s,t## are pairwise coprime, since otherwise we would get a common factor cubed, which we can cancel and still have the same equation structure ##2r'^3+3s'^3=t'^3##. So we continue to cancel all common factors. Now we have
- ##2r^3+3s^3=t^3##
- ##r,s,t > 0##
- ##r,s,t## are pairwise coprime
Kyle Nemeth said:
If ##c=0##, then ##2a^6+3b^6=0 \quad \implies \frac {a}{b}=\sqrt[6] \frac {-3}{2}## which also implies ##a## or ##b## must be irrational (and complex).
You need ##b\neq 0## here, but this is not necessary. Both terms of the right hand side are always non negative. If their sum equals zero, then both summands have to be zero, i.e. ##a=b=c=0##.