PhysicsBoi1908
- 50
- 12
Question 15
Define $$s_i=a_1 + a_2 + a_3 + \cdots + a_i$$ where ##i\in\{1, 2, \cdots, n\}##
Note that any element of the subset ##\{a_{j1}, \cdots, a_{jm}\}## can be represented as a difference of ##s_i## and ##s_{i-1}## using suitable i.
Let ##b_i## be the remainder when ##s_i## is divided by ##n##. ##b_i## can assume n values from ##0## to ##n-1##.
Then $$s_i \equiv b_i~(mod~n)~\cdots~(1)$$
If ##b_i## becomes ##0## then the set ##\{a_1, a_2, \cdots, a_i\}## satisfies the required condition so now we need to consider only those cases where ##b_i## assumes values from ##1## to ##n-1##.
We have ##n## possible sums of the form ##s_i## but only ##n-1## remainders.
So using the Pigeon Hole principle, At least one remainder must have occurred twice.
Say ##b_m = b_n## such that ##m>n##.
Then using ##(1)## we get $$s_m - s_n \equiv 0~ (mod~n)$$
Which means that the required set is ##\{a_{n+1}, \cdots, a_m\}## which will always exist.
And we are done.
Note that any element of the subset ##\{a_{j1}, \cdots, a_{jm}\}## can be represented as a difference of ##s_i## and ##s_{i-1}## using suitable i.
Let ##b_i## be the remainder when ##s_i## is divided by ##n##. ##b_i## can assume n values from ##0## to ##n-1##.
Then $$s_i \equiv b_i~(mod~n)~\cdots~(1)$$
If ##b_i## becomes ##0## then the set ##\{a_1, a_2, \cdots, a_i\}## satisfies the required condition so now we need to consider only those cases where ##b_i## assumes values from ##1## to ##n-1##.
We have ##n## possible sums of the form ##s_i## but only ##n-1## remainders.
So using the Pigeon Hole principle, At least one remainder must have occurred twice.
Say ##b_m = b_n## such that ##m>n##.
Then using ##(1)## we get $$s_m - s_n \equiv 0~ (mod~n)$$
Which means that the required set is ##\{a_{n+1}, \cdots, a_m\}## which will always exist.
And we are done.