Delta2
Homework Helper
- 6,002
- 2,628
I don't understand why u have -2 inside the box while it should have been +2. Then after calculating the integrals as in the last line(where -2 I put +2) above I get $$2\frac{\pi}{4}\frac{32}{5}+2\pi\frac{12}{5}=40\frac{\pi}{5}=8\pi$$benorin said:Corrected arithmetic error from previous post, ##\boxed{\boxed{\text{corrections are double boxed}}}##.
I assume the cone has a base because it's oriented. Let ##S_1## denote the upper cone-shaped surface given by ##z=g(x,y):=2-\sqrt{x^2+y^2},\quad ( 0\leq x^2+y^2\leq 2^2)##. Also denote the ##x,y,## and ##z## components of ##\vec{F}## by ##P,Q,## and ##R##, respectively. Then
$$\begin{gathered} \iint_{S_1}\vec{F}\cdot d\vec{S} = \iint_{\text{Projection of } S_1\text{ in the }xy\text{-plane}}\left(-Pg_x-Qg_y+R\right)\, dA \\ = \iint_{x^2+y^2\leq 2^2}\left[\tfrac{2x^2y^2}{\sqrt{x^2+y^2}}+(x^2+y^2)\left(-1+\sqrt{x^2+y^2}\right)\right] \, dA\\ = \int_{0}^{2\pi}\int_0^2\left(\tfrac{\boxed{\boxed{-2}}r^4\sin ^2\theta\cos ^2\theta}{r}+r^2(r-1)\right) r\, dr d\theta\\ =\boxed{\boxed{-2}}\int_{0}^{2\pi}\sin ^2\theta\cos ^2\theta\, d\theta\int_0^2r^4\, dr+\int_{0}^{2\pi}d\theta \int_0^2 (r^4-r^3)\, dr=\boxed{\boxed{\tfrac{8\pi}{5}}}\\ \end{gathered} $$
Another way to verify this result:The divergence of the vector field F can be easily found and its 0. Hence by the divergence theorem, the flux through any closed surface is zero.
I believe you calculated correctly the flux through the circular disk at the base of the cone as##-8\pi##, this means that the flux through the surface ##S_1## must be ##8\pi## so they add together and give result 0, because the surface ##S_1## and the circular disk at the base form a closed surface.
