I will circle back to the flux thing after this post.
fresh_42 said:
The Feynman trick is the correct idea, but I'd like to see the complete integration, since this is a bit tricky to do. And what about ##|\alpha|=1##?
Edit: The unabridged version.
#8) a) Let ##I(\alpha ) := \int_0^\pi \log (1-2\alpha \cos(x)+\alpha^2)\,dx\quad ( | \alpha | > 1)##, then
$$\begin{gathered} \tfrac{dI}{d\alpha } = \int_0^\pi \tfrac{\partial }{\partial \alpha} \log (1-2\alpha \cos(x)+\alpha ^2)\,dx = 2 \int_0^\pi \tfrac{\alpha -\cos (x) }{1-2\alpha \cos (x)+\alpha ^2} \,dx \\ = \tfrac{1}{\alpha} \int_0^\pi\left(1- \tfrac{1-\alpha ^2}{1-2\alpha \cos(x)+\alpha^2} \right) \,dx \\ \end{gathered}$$
now do Karl Weierstass' trick and apply the change the change of variables ##t=\tan \left(\tfrac{x}{2}\right) , 0\leq t\leq \infty\implies \cos (x)= \tfrac{1-t^2}{1+t^2}\text{ and } dx=\tfrac{2\, dt}{1+t^2}## to get
$$\begin{gathered} \tfrac{dI}{d\alpha } = 2\int_0^\infty \tfrac{\alpha -\tfrac{1-t^2}{1+t^2}}{1-2\alpha \left(\tfrac{1-t^2}{1+t^2}\right)+\alpha ^2}\cdot \tfrac{2\, dt}{1+t^2} = 4\int_0^\infty \tfrac{(\alpha+1)t^2+(\alpha -1)}{\left[ (\alpha +1)^2t^2+(\alpha -1) ^2\right] (1+t^2)}\, dt\\ \end{gathered}$$
Aside: partial faction decomposition of the integrand. Let ##A,B, C,## and ##D## be rational functions of ##\alpha##. Then set
$$\begin{gathered}\tfrac{(\alpha+1)t^2+(\alpha -1)}{\left[ (\alpha +1)^2 t^2+(\alpha -1) ^2\right] (1+t^2)}=\tfrac{At+B}{1+t^2}+\tfrac{Ct+D}{ (\alpha +1)^2 t^2+ (\alpha -1) ^2}\\ \implies (\alpha +1) t^2 + (\alpha -1)= (At+B) \left[ (\alpha +1)^2 t^2 + (\alpha -1) ^2 \right] + (Ct+D)(1+t^2)\\ \end{gathered}$$
solving this system of equations is quickest by plugging in enough values of ##t##, namely,
$$\begin{gathered} \boxed{t=0} : \alpha -1 = B(\alpha -1)^2+D\implies D=(\alpha -1)\left[ 1-B(\alpha -1)\right] \quad (eqn\, 1) \\ \boxed{t=i} : -2 = (Ai+B)\left[ (\alpha -1)^2+(\alpha +1)^2\right]\implies A=0 \quad (eqn \, 2)\text{ and } B=\tfrac{1}{2\alpha}\quad (eqn \, 3)\\ \end{gathered} $$
Now ##(eqn \, 2)## implies ##C=0## and substituting ##(eqn \, 3)## into ##(eqn \, 1)## gives ##D=\tfrac{1}{2}\left(\alpha - \tfrac{1}{\alpha}\right)##.
End aside.
Hence we have
$$\begin{gathered} \tfrac{dI}{d\alpha } = 2\int_0^\infty\left( \tfrac{\tfrac{1}{\alpha}}{1+t^2}+\tfrac{\alpha -\tfrac{1}{\alpha}}{ (\alpha +1)^2 t^2+(\alpha -1) ^2}\right) \, dt \\ = \tfrac{2}{\alpha} \left[ \tan ^{-1} (t) \right| _{t=0}^{\infty}+2\tfrac{\alpha -\tfrac{1}{\alpha}}{(\alpha +1) ^2}\int_0^\infty \tfrac{dt}{ t^2+\left( \tfrac{\alpha -1}{\alpha +1}\right) ^2} \\= \tfrac{\pi}{\alpha} +2\tfrac{\alpha -\tfrac{1}{\alpha}}{(\alpha +1) ^2}\cdot \left( \tfrac{\alpha +1}{\alpha -1}\right)\left[ \tan ^{-1} \left( t\cdot \tfrac{\alpha +1}{\alpha -1}\right) \right| _{t=0}^{\infty} \\ = \boxed{\tfrac{2\pi}{\alpha}=\tfrac{dI}{d\alpha}}\\ \end{gathered}$$
hence
$$I(\alpha )=2\pi \int\tfrac{d\alpha}{\alpha}= 2\pi\log | \alpha | + C\quad (\text{for } | \alpha | > 1) $$
As for the case of ##\alpha =1##, I know that ##I(1)=0## but infuriatingly enough I cannot prove it with any clever trick thus far. I
think there's going to be something on par with the integral of a odd function over a symmetric interval vanishes--but I did trig, log, and basic integral identities for a half hour: no joy! I think I'm just tired. I hope it will come to me later...
Note: I've read this problem somewhere before.
Edit 2: Did I say after this post? Right. Well not
right after...