Yes, sorry, I forgot to square root. Anyway, I'll give a more complete method here for anyone that wants it. First we need to find the centre of $$f(x,y) = 34x^2 + 24xy +41y^2 + 20x + 110y + 50=0$$Set ##f_y = 0## and ##f_x = 0## to get$$\begin{align*}68x + 24y + 20 &= 0 \\
82y + 24x + 110&=0
\end{align*}$$this is solved by ##\mathbf{x}_c = (x_c,y_c)^{\tau} = (\frac{1}{5}, \frac{-7}{5})^{\tau}##, i.e. this is the centre of the ellipse. Now we perform a coordinate transformation ##\mathbf{x}' = \mathbf{x} -\mathbf{x}_c## so that the centre is at our new origin ##\mathcal{O}'##, i.e.$$34(x' + \frac{1}{5}) + 24(x' + \frac{1}{5})(y' - \frac{7}{5}) + 41(y' - \frac{7}{5})^2 + 20(x' + \frac{1}{5}) + 110(y' - \frac{7}{5}) + 50 = 0$$ $$34x'^2 + 24x'y' + 41y'^2 = 25$$Now we perform a further coordinate transformation, this time a rotation (preserving the origin, ##\mathcal{O}'' = \mathcal{O}'##), so that the new axis intersect the ellipse at the vertices. This will be ##\mathbf{x}'' = R\mathbf{x}'##, where ##R = \begin{pmatrix} c & s \\ -s & c\end{pmatrix}##, and ##c=\cos{\theta}##, ##s = \sin{\theta}## for some angle ##\theta## to be determined. Running through the algebra with ##x' = cx'' - sy''## and ##y' = sx'' + cy''## yields$$34(cx'' -sy'')^2 + 24(cx'' - sy'')(sx'' + cy'') + 41(sx'' + cy'') = 25$$ $$x''^2 [ 34 c^2 + 41s^2 + 24cs] + y''^2 [41c^2 + 34s^2 - 24cs] + x''y''[24c^2 - 24s^2 + 14cs]$$We require that the coefficient of ##x''y''## is brought to be zero, i.e. that ##s = 4/5## and ##c=3/5##. Now it's just a case of substituting those back into the equation,$$50x''^2 + 25y''^2 = 25 \iff 2x''^2 + y''^2 = 1$$and for brevity I'll re-label ##x'' \equiv u## and ##y'' \equiv v##. And that completes the transformation!