Challenge Math Challenge - November 2020

Click For Summary
The discussion revolves around various mathematical challenges, including the one-dimensional diffusion equation and its properties, such as the maximum value being found on boundary lines or the initial line. Participants also explored the characteristics of normed spaces, specifically proving that certain spaces are not Banach spaces. Solutions to problems involving linear algebra, such as finding eigenvalues and characteristic polynomials, were provided, along with discussions on quadratic forms and their geometric interpretations. Additionally, the Lotka-Volterra system was analyzed, demonstrating its tendency towards a spatially uniform state over time. The thread showcases a collaborative effort to solve complex mathematical problems across different fields, highlighting the depth of understanding among participants.
  • #31
etotheipi said:
What is a Euclidean normal form, and what do we mean by ##(x,y)^{\tau}##?

I believe it means the vector ##(x,y)## transposed, so written as column vector ##\begin{pmatrix}x \\ y\end{pmatrix}##.
 
Physics news on Phys.org
  • #32
etotheipi said:
What is a Euclidean normal form, and what do we mean by ##(x,y)^{\tau}##?
Yes, it is only a habit in this case to write vectors or coordinates as column. The Euclidean normal form is, when the axis of the conic sections are the coordinate axis, and its center the origin of the Cartesian coordinate system: rotations, translations; basically such that all interesting quantities can directly be read.
 
  • #33
So if I understand correctly,
$$A_Q = \begin{pmatrix} 34 & 12 & 10 \\ 12 & 41 & 55 \\ 10 & 55 & 50\end{pmatrix}$$and ##f(x,y) = \mathbf{x}^{\tau}A_Q \mathbf{x}##, ##\text{det}(A_Q) = -31250##, and ##\text{det}(A_{33}) = 1250##, and ##\frac{\text{det}(A_Q)}{\text{det}(A_{33})} = -25##, so I guess when you say you want it in normal form, since ##A_{33}## has eigenvalues ##\lambda = 25, 50##, it will be$$50u^2 + 25v^2 = 25 \iff 2u^2 + v^2 = 1 \iff \left(\frac{u}{1/\sqrt{2}}\right)^2 + \left(\frac{v}{1}\right)^2 = 1$$so vertices at ##(u,v) = \left( \pm 1/\sqrt{2}, 0\right), \left( 0, \pm 1\right)## and foci at ##(0, \pm \frac{1}{2})##? Is that what you had in mind, @Fred Wright?
 
  • #34
etotheipi said:
So if I understand correctly,
$$A_Q = \begin{pmatrix} 34 & 12 & 10 \\ 12 & 41 & 55 \\ 10 & 55 & 50\end{pmatrix}$$and ##f(x,y) = \mathbf{x}^{\tau}A_Q \mathbf{x}##, ##\text{det}(A_Q) = -31250##, and ##\text{det}(A_{33}) = 1250##, and ##\frac{\text{det}(A_Q)}{\text{det}(A_{33})} = -25##, so I guess when you say you want it in normal form, since ##A_{33}## has eigenvalues ##\lambda = 25, 50##, it will be$$50u^2 + 25v^2 = 25 \iff 2u^2 + v^2 = 1 \iff \left(\frac{u}{1/\sqrt{2}}\right)^2 + \left(\frac{v}{1}\right)^2 = 1$$so vertices at ##(u,v) = \left( \pm 1/\sqrt{2}, 0\right), \left( 0, \pm 1\right)## and foci at ##(0, \pm \frac{1}{2})##? Is that what you had in mind, @Fred Wright?
Well, you could have shown how you did it. It's a bit difficult to learn anything from your solution. And the foci are ##(0,\pm 1/\sqrt{2})## if I wasn't mistaken.
 
  • #35
As far as making questions more accessible, you could have just asked something like construct a sequence of functions that are differentiable whose limit is not differentiable, and not scared off people that haven't heard of a Banach space.
 
  • #36
Office_Shredder said:
As far as making questions more accessible, you could have just asked something like construct a sequence of functions that are differentiable whose limit is not differentiable, and not scared off people that haven't heard of a Banach space.
That isn't what the problem asks for.
 
  • Like
Likes member 587159
  • #37
fresh_42 said:
Well, you could have shown how you did it. It's a bit difficult to learn anything from your solution. And the foci are ##(0,\pm 1/\sqrt{2})## if I wasn't mistaken.
Yes, sorry, I forgot to square root. Anyway, I'll give a more complete method here for anyone that wants it. First we need to find the centre of $$f(x,y) = 34x^2 + 24xy +41y^2 + 20x + 110y + 50=0$$Set ##f_y = 0## and ##f_x = 0## to get$$\begin{align*}68x + 24y + 20 &= 0 \\
82y + 24x + 110&=0
\end{align*}$$this is solved by ##\mathbf{x}_c = (x_c,y_c)^{\tau} = (\frac{1}{5}, \frac{-7}{5})^{\tau}##, i.e. this is the centre of the ellipse. Now we perform a coordinate transformation ##\mathbf{x}' = \mathbf{x} -\mathbf{x}_c## so that the centre is at our new origin ##\mathcal{O}'##, i.e.$$34(x' + \frac{1}{5}) + 24(x' + \frac{1}{5})(y' - \frac{7}{5}) + 41(y' - \frac{7}{5})^2 + 20(x' + \frac{1}{5}) + 110(y' - \frac{7}{5}) + 50 = 0$$ $$34x'^2 + 24x'y' + 41y'^2 = 25$$Now we perform a further coordinate transformation, this time a rotation (preserving the origin, ##\mathcal{O}'' = \mathcal{O}'##), so that the new axis intersect the ellipse at the vertices. This will be ##\mathbf{x}'' = R\mathbf{x}'##, where ##R = \begin{pmatrix} c & s \\ -s & c\end{pmatrix}##, and ##c=\cos{\theta}##, ##s = \sin{\theta}## for some angle ##\theta## to be determined. Running through the algebra with ##x' = cx'' - sy''## and ##y' = sx'' + cy''## yields$$34(cx'' -sy'')^2 + 24(cx'' - sy'')(sx'' + cy'') + 41(sx'' + cy'') = 25$$ $$x''^2 [ 34 c^2 + 41s^2 + 24cs] + y''^2 [41c^2 + 34s^2 - 24cs] + x''y''[24c^2 - 24s^2 + 14cs]$$We require that the coefficient of ##x''y''## is brought to be zero, i.e. that ##s = 4/5## and ##c=3/5##. Now it's just a case of substituting those back into the equation,$$50x''^2 + 25y''^2 = 25 \iff 2x''^2 + y''^2 = 1$$and for brevity I'll re-label ##x'' \equiv u## and ##y'' \equiv v##. And that completes the transformation!
 
  • Like
Likes fresh_42
  • #38
etotheipi said:
Yes, sorry, I forgot to square root. Anyway, I'll give a more complete method here for anyone that wants it. First we need to find the centre of $$f(x,y) = 34x^2 + 24xy +41y^2 + 20x + 110y + 50=0$$Set ##f_y = 0## and ##f_x = 0## to get$$\begin{align*}68x + 24y + 20 &= 0 \\
82y + 24x + 110&=0
\end{align*}$$this is solved by ##\mathbf{x}_c = (x_c,y_c)^{\tau} = (\frac{1}{5}, \frac{-7}{5})^{\tau}##, i.e. this is the centre of the ellipse. Now we perform a coordinate transformation ##\mathbf{x}' = \mathbf{x} -\mathbf{x}_c## so that the centre is at our new origin ##\mathcal{O}'##, i.e.$$34(x' + \frac{1}{5}) + 24(x' + \frac{1}{5})(y' - \frac{7}{5}) + 41(y' - \frac{7}{5})^2 + 20(x' + \frac{1}{5}) + 110(y' - \frac{7}{5}) + 50 = 0$$ $$34x'^2 + 24x'y' + 41y'^2 = 25$$Now we perform a further coordinate transformation, this time a rotation (preserving the origin, ##\mathcal{O}'' = \mathcal{O}'##), so that the new axis intersect the ellipse at the vertices. This will be ##\mathbf{x}'' = R\mathbf{x}'##, where ##R = \begin{pmatrix} c & s \\ -s & c\end{pmatrix}##, and ##c=\cos{\theta}##, ##s = \sin{\theta}## for some angle ##\theta## to be determined. Running through the algebra with ##x' = cx'' - sy''## and ##y' = sx'' + cy''## yields$$34(cx'' -sy'')^2 + 24(cx'' - sy'')(sx'' + cy'') + 41(sx'' + cy'') = 25$$ $$x''^2 [ 34 c^2 + 41s^2 + 24cs] + y''^2 [41c^2 + 34s^2 - 24cs] + x''y''[24c^2 - 24s^2 + 14cs]$$We require that the coefficient of ##x''y''## is brought to be zero, i.e. that ##s = 4/5## and ##c=3/5##. Now it's just a case of substituting those back into the equation,$$50x''^2 + 25y''^2 = 25 \iff 2x''^2 + y''^2 = 1$$and for brevity I'll re-label ##x'' \equiv u## and ##y'' \equiv v##. And that completes the transformation!
How did you learn this stuff when you're a first year uni student? I'm at the top of my first year math course for chemistry, but I haven't even seen half of this stuff before.
 
  • #39
Mayhem said:
How did you learn this stuff when you're a first year uni student? I'm at the top of my first year math course for chemistry, but I haven't even seen half of this stuff before.

Coordinate transformations I learned from Douglas Gregory, Classical Mechanics! :smile: It's not so bad, you just need to be careful about when you're leaving the vector alone but changing its representation i.e. w.r.t. a new coordinate system (passive), or if you're actually transforming the vector (active), and not getting the signs mixed up!
 
  • Like
Likes Mayhem
  • #40
Mayhem said:
How did you learn this stuff when you're a first year uni student? I'm at the top of my first year math course for chemistry, but I haven't even seen half of this stuff before.
It is not too difficult:
1604797098910.png

Given the red one, asked for the blue one. You have to rotate the curve, stretch it, and shift the center into the origin. You can either handle this with linear algebra (hint in post #29, or wait for the long version in my solution manual), or simply perform coordinate transformations (post #44) until it fits. We want to have an ellipse at the end: ##\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1##.

Imagine the ellipse is a crystal instead, and the red one is what you see under the microscope, whereas you need the blue version to identify it by the pictures in the book.
 
  • Like
Likes Mayhem
  • #41
Mayhem said:
How did you learn this stuff when you're a first year uni student? I'm at the top of my first year math course for chemistry, but I haven't even seen half of this stuff before.
In physics i risk to say there is change of coordinates in all place, mainly in mechanic, since it is important to all the laws be the same in all coordinates, i think the college starts to talk about it very early when the course is physics. For example, in my first semester of physics i saw it, probably the same with ethoteipi
 
  • #42
LCSphysicist said:
In physics i risk to say there is change of coordinates in all place, mainly in mechanic, since it is important to all the laws be the same in all coordinates, i think the college starts to talk about it very early when the course is physics. For example, in my first semester i saw it.
I would even go as far as to say: physics is all about coordinates. Without coordinates, how do you measure? And it is the reason why general relativity is hard to understand: all of a sudden, coordinates become dependent on the observer! Mathematically you just want to know whether it is an ellipse, a parabola or an hyperbola.
 
  • #43
Problem 5, I can do the first two parts today, too tired to attempt the harder final parts,$$\begin{align*}

\text{det}\begin{bmatrix}5 - \lambda &0&1&6\\3&3-\lambda&5&2\\0&0&3-\lambda&0\\6&0&3&-\lambda\end{bmatrix} &= \text{det}\begin{bmatrix}0&0&3-\lambda&0\\6&0&3&-\lambda\\5 - \lambda &0&1&6\\3&3-\lambda&5&2\end{bmatrix} \\ \\

&= (3-\lambda) \text{det} \begin{bmatrix} 6 & 0 & -\lambda \\ 3-\lambda & 0 & 6 \\ 3 & 3-\lambda & 2 \end{bmatrix} \\ \\

&= (3-\lambda)\left( 36(\lambda -3) -\lambda(\lambda-3)^2 \right) \\

&= (\lambda - 3)^2 (\lambda + 4)(\lambda -9) = 0
\end{align*}$$so ##\lambda_1 = 3##, ##\lambda_2 = -4##, ##\lambda_3 = 9## are the eigenvalues of ##A##. Now for the eigenvectors, ##\vec{u}, \vec{v}## and ##\vec{w}##,$$\begin{align*}\begin{bmatrix} -4 & 0 & 1 & 6 \\ 3 & -6 & 5 &2 \\ 0 & 0 & -6 & 0 \\ 6 & 0 & 3 & 9\end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff u_1 = \frac{3}{2} u_4, u_2 = \frac{13}{12}u_4, u_3 = 0 \\ \\\begin{bmatrix} 9 & 0 & 1 & 6 \\ 3 & 7 & 5 &2 \\ 0 & 0 & 7 & 0 \\ 6 & 0 & 3 & 4\end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff v_1 = -\frac{2}{3}v_4, v_2 =0, v_3 = 0 \\ \\ \begin{bmatrix} 2 & 0 & 1 & 6 \\ 3 & 0 & 5 &2 \\ 0 & 0 & 0 & 0 \\ 6 & 0 & 3 & -3\end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff w_1 = w_3 = w_4 = 0\end{align*}$$

So ##\vec{u} = \begin{bmatrix} 18 \\ 13 \\ 0 \\ 12 \end{bmatrix}##, ##\vec{v} = \begin{bmatrix} -2 \\ 0 \\ 0 \\ 3 \end{bmatrix}##, ##\vec{w} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}##
 
Last edited by a moderator:
  • #44
etotheipi said:
Problem 5, I can do the first two parts today, too tired to attempt the harder final parts,$$\begin{align*}

\text{det}\begin{bmatrix}5 - \lambda &0&1&6\\3&3-\lambda&5&2\\0&0&3-\lambda&0\\6&0&3&-\lambda\end{bmatrix} &= \text{det}\begin{bmatrix}0&0&3-\lambda&0\\6&0&3&-\lambda\\5 - \lambda &0&1&6\\3&3-\lambda&5&2\end{bmatrix} \\ \\

&= (3-\lambda) \text{det} \begin{bmatrix} 6 & 0 & -\lambda \\ 3-\lambda & 0 & 6 \\ 3 & 3-\lambda & 2 \end{bmatrix} \\ \\

&= (3-\lambda)\left( 36(\lambda -3) -\lambda(\lambda-3)^2 \right) \\

&= (\lambda - 3)^2 (\lambda + 4)(\lambda -9) = 0
\end{align*}$$so ##\lambda_1 = 3##, ##\lambda_2 = -4##, ##\lambda_3 = 9## are the eigenvalues of ##A##. Now for the eigenvectors, ##\vec{u}, \vec{v}## and ##\vec{w}##,$$\begin{align*}\begin{bmatrix} -4 & 0 & 1 & 6 \\ 3 & -6 & 5 &2 \\ 0 & 0 & -6 & 0 \\ 6 & 0 & 3 & 9\end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff v_1 = -\frac{2}{3} v_4, v_2 = \frac{13}{12}u_4, v_3 = 0 \\ \\\begin{bmatrix} 9 & 0 & 1 & 6 \\ 3 & 7 & 5 &2 \\ 0 & 0 & 7 & 0 \\ 6 & 0 & 3 & 4\end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff u_1 = \frac{3}{2}u_4, u_2 =0, u_3 = 0 \\ \\ \begin{bmatrix} 2 & 0 & 1 & 6 \\ 0 & 7 & 5 &2 \\ 0 & 0 & 0 & 0 \\ 6 & 0 & 3 & -3\end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff w_1 = w_3 = w_4 = 0\end{align*}$$So ##\vec{u} = \begin{bmatrix} 18 \\ 13 \\ 0 \\ 12 \end{bmatrix}##, ##\vec{v} = \begin{bmatrix} -2 \\ 0 \\ 0 \\ 3 \end{bmatrix}##, ##\vec{w} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}##
Sleep over it. It is problem 4. And what is the difference between 3 and -4? And what are 9,12,13,18? o0)
 
  • Like
Likes etotheipi
  • #45
fresh_42 said:
Sleep over it. It is problem 4. And what is the difference between 3 and -4? And what are 9,12,13,18? o0)

Think I got the numbers mixed up, they should be ok now!
 
  • #46
etotheipi said:
Think I got the numbers mixed up, they should be ok now!
Let's agree on a single set of representatives, not on many at the same time.
 
  • #47
historical hints: 3-weierstrass, inverse mapping theorem, 7-sylow, 9-nakayama.
 
Last edited:
  • #48
Let ##f(x)=x(x+1)(x+2)(x+3)=x^4 +6x^3 11x^2 + 6x##

1. Finding the stationary points of ##f(x) \rightarrow f'(x)=0 ##
##4x^3 + 18x^2 + 22x + 6 = 0##
##(2x+3)(4x^2+12x+4)=0##
##x=-\frac{3}{2} , x=\frac{-3 \pm \sqrt{5}}{2}##

Checking the sign diagram of first derivative:
a. For ##x<\frac{-3 - \sqrt{5}}{2} \rightarrow f'(x) = (-)##

b. For ##\frac{-3 - \sqrt{5}}{2}<x<-\frac{3}{2} \rightarrow f'(x) = (+)##

c. For ##-\frac{3}{2} <x<\frac{-3 + \sqrt{5}}{2} \rightarrow f'(x) = (-)##

d. For ##x>\frac{-3 + \sqrt{5}}{2} \rightarrow f'(x) = (+)##

##x=\frac{-3 - \sqrt{5}}{2} \rightarrow y=-1## so ##(\frac{-3 - \sqrt{5}}{2} , -1)## is local minimum

##x=-\frac{3}{2} \rightarrow y=\frac{9}{16}## so ##(-\frac{3}{2} , \frac{9}{16})## is local maximum

##x=\frac{-3 + \sqrt{5}}{2} \rightarrow y=-1## so ##(\frac{-3 + \sqrt{5}}{2} , -1)## is local minimum2. Checking the end behaviour of ##f(x)##
##\lim_{x \to \pm \infty} {f(x)=\infty}##

So the local minimum found above is also global minimum

3.
##f(x)=a## will have no solution if ##a## is below global minimum ##\rightarrow a < -1##

No ##a## will result in ##f(x)## has one solution

##f(x)=a## will have two solutions if ##a## is global minimum or ##a## is above global maximum ##\rightarrow a=-1## or ##a>\frac{9}{16}##

##f(x)=a## will have three solutions if ##a## is global maximum ##\rightarrow a=\frac{9}{16}##

##f(x)=a## will have four solutions if ##a## is between local minimum and local maximum ##\rightarrow -1<a<\frac{9}{16}##

I am not sure how to write good conclusion for final answer
 
  • #49
Let ##a=65536## and ##b=32768## so ##z=\frac{(a-3)^3 +(a-2)^3 + (a-1)^3 + a^3 + (a+1)^3 (a+2)^3 + (a+3)^3}{(b-3)(b-2)+(b-1).b+b.(b+1)+(b+2)b+3)}##

After expanding everything: ##z=\frac{7a^3+84a}{4b^2 +12}##

Since ##a=2b## :
##z=\frac{56b^3 +168b}{4b^2 +12}##

##=\frac{56b(b^2+3)}{4(b^2+3)}##

##=14b##
 
  • Like
  • Informative
Likes Keith_McClary and PeroK
  • #50
Note ##351 = 3^3\cdot 13##. Let ##n_3## denote the number of Sylow ##3## subgroups of ##G## and ##n_{13}## denote the number of Sylow ##13## subgroups of ##G##. For a given prime ##p## that divides ##\vert G \vert##, the Sylow ##p## subgroups are conjugates. So, it's enough to show ##n_3 = 1## or ##n_{13} = 1##. By Sylow's theorem, ##n_{13} \vert 27## and ##n_{13} = 1 \text{mod 13}##. So, ##n_{13} = 1## or ##27##. If ##n_{13} = 1##, we are done. Suppose ##n_{13} = 27##. This gives ##27\cdot 12 = 324## distinct elements of order ##13##. This leaves ##351 - 324 = 27## elements unaccounted for. Each Sylow ##3## subgroup has order ##27##, and we know ##n_3 \vert 13##. (And no element of a Sylow ##3## subgroup contains an element of order ##13##). Combining the last two lines, we have ##n_3 = 1##. []
[\spoiler]
 
  • Like
Likes fresh_42
  • #51
songoku said:
Let ##f(x)=x(x+1)(x+2)(x+3)=x^4 +6x^3 11x^2 + 6x##

1. Finding the stationary points of ##f(x) \rightarrow f'(x)=0 ##
##4x^3 + 18x^2 + 22x + 6 = 0##
##(2x+3)(4x^2+12x+4)=0##
##x=-\frac{3}{2} , x=\frac{-3 \pm \sqrt{5}}{2}##

Checking the sign diagram of first derivative:
a. For ##x<\frac{-3 - \sqrt{5}}{2} \rightarrow f'(x) = (-)##

b. For ##\frac{-3 - \sqrt{5}}{2}<x<-\frac{3}{2} \rightarrow f'(x) = (+)##

c. For ##-\frac{3}{2} <x<\frac{-3 + \sqrt{5}}{2} \rightarrow f'(x) = (-)##

d. For ##x>\frac{-3 + \sqrt{5}}{2} \rightarrow f'(x) = (+)##

##x=\frac{-3 - \sqrt{5}}{2} \rightarrow y=-1## so ##(\frac{-3 - \sqrt{5}}{2} , -1)## is local minimum

##x=-\frac{3}{2} \rightarrow y=\frac{9}{16}## so ##(-\frac{3}{2} , \frac{9}{16})## is local maximum

##x=\frac{-3 + \sqrt{5}}{2} \rightarrow y=-1## so ##(\frac{-3 + \sqrt{5}}{2} , -1)## is local minimum2. Checking the end behaviour of ##f(x)##
##\lim_{x \to \pm \infty} {f(x)=\infty}##

So the local minimum found above is also global minimum

3.
##f(x)=a## will have no solution if ##a## is below global minimum ##\rightarrow a < -1##

No ##a## will result in ##f(x)## has one solution

##f(x)=a## will have two solutions if ##a## is global minimum or ##a## is above global maximum ##\rightarrow a=-1## or ##a>\frac{9}{16}##

##f(x)=a## will have three solutions if ##a## is global maximum ##\rightarrow a=\frac{9}{16}##

##f(x)=a## will have four solutions if ##a## is between local minimum and local maximum ##\rightarrow -1<a<\frac{9}{16}##

I am not sure how to write good conclusion for final answer
You should have drawn a graph of the function first. Then, is there a symmetry in the function? What happens if you let ##z = x + \frac 3 2##?

This should give you more insight and save at least some of the algebra.
 
  • #52
songoku said:
Let ##f(x)=x(x+1)(x+2)(x+3)=x^4 +6x^3 11x^2 + 6x##

1. Finding the stationary points of ##f(x) \rightarrow f'(x)=0 ##
##4x^3 + 18x^2 + 22x + 6 = 0##
##(2x+3)(4x^2+12x+4)=0##
##x=-\frac{3}{2} , x=\frac{-3 \pm \sqrt{5}}{2}##

Checking the sign diagram of first derivative:
a. For ##x<\frac{-3 - \sqrt{5}}{2} \rightarrow f'(x) = (-)##

b. For ##\frac{-3 - \sqrt{5}}{2}<x<-\frac{3}{2} \rightarrow f'(x) = (+)##

c. For ##-\frac{3}{2} <x<\frac{-3 + \sqrt{5}}{2} \rightarrow f'(x) = (-)##

d. For ##x>\frac{-3 + \sqrt{5}}{2} \rightarrow f'(x) = (+)##

##x=\frac{-3 - \sqrt{5}}{2} \rightarrow y=-1## so ##(\frac{-3 - \sqrt{5}}{2} , -1)## is local minimum

##x=-\frac{3}{2} \rightarrow y=\frac{9}{16}## so ##(-\frac{3}{2} , \frac{9}{16})## is local maximum

##x=\frac{-3 + \sqrt{5}}{2} \rightarrow y=-1## so ##(\frac{-3 + \sqrt{5}}{2} , -1)## is local minimum2. Checking the end behaviour of ##f(x)##
##\lim_{x \to \pm \infty} {f(x)=\infty}##

So the local minimum found above is also global minimum

3.
##f(x)=a## will have no solution if ##a## is below global minimum ##\rightarrow a < -1##

No ##a## will result in ##f(x)## has one solution

##f(x)=a## will have two solutions if ##a## is global minimum or ##a## is above global maximum ##\rightarrow a=-1## or ##a>\frac{9}{16}##

##f(x)=a## will have three solutions if ##a## is global maximum ##\rightarrow a=\frac{9}{16}##

##f(x)=a## will have four solutions if ##a## is between local minimum and local maximum ##\rightarrow -1<a<\frac{9}{16}##

I am not sure how to write good conclusion for final answer
Can you summarize this to check the answers which are somehow hidden in your text, which is hard to follow, since you didn't say what you are doing there?
No solution: ##a = ... ## or ## a\in ...##
1 solution: ##a = ... ## or ## a\in ...##
2 solutions: ##a = ... ## or ## a\in ...##
etc.

I know I haven't explicitly asked for, but what are the solutions? At which values of ##x## does the graph intersect the ##x-##axis in the five cases?
 
  • #53
songoku said:
Let ##a=65536## and ##b=32768## so ##z=\frac{(a-3)^3 +(a-2)^3 + (a-1)^3 + a^3 + (a+1)^3 (a+2)^3 + (a+3)^3}{(b-3)(b-2)+(b-1).b+b.(b+1)+(b+2)b+3)}##

After expanding everything: ##z=\frac{7a^3+84a}{4b^2 +12}##

Since ##a=2b## :
##z=\frac{56b^3 +168b}{4b^2 +12}##

##=\frac{56b(b^2+3)}{4(b^2+3)}##

##=14b##
... and ##14b = 458752##. This would have actually answered the question!
 
  • #54
For problem 4, what does ##\mathbb{M_4}(\mathbb{Z_4})## mean?
 
  • #55
##\mathbb{M}_4(\mathbb{Z}_7)## is the vector space of all ##4\times 4## matrices, where the numbers are taken from the field ##\mathbb{Z}_7=\mathbb{Z}/7\mathbb{Z}=\{0,1,2,3,4,5,6\}##.
 
  • Informative
Likes Keith_McClary
  • #56
I solved part a of 4. I have no idea what "basis of an eigenspace is" so I'm going to look into that.

Let
$$A = \begin{pmatrix}
5 & 0 & 1 & 6\\
3 & 3 & 5 & 2\\
0 & 0 & 3 & 0 \\
6 & 0 & 3 & 0
\end{pmatrix}$$
And ##I## denote a 4x4 identity matrix. Then
$$
t I - A = \begin{pmatrix}
t- 5 & 0 & 1 & 6\\
3 & t- 3 & 5 & 2\\
0 & 0 & t- 3 & 0 \\
6 & 0 & 3 & t
\end{pmatrix}
$$
The determinant can be determined through a series of calculations:
$$
\det(t I - A) = (t-5)\begin{vmatrix}
t-3 & 5 & 2\\
0 & t-3 & 0 \\
0 & 6 & t
\end{vmatrix} + \begin{vmatrix}
3 & t-3 & 2 \\
0 & 0 & 0 \\
6 & 0 & t
\end{vmatrix} - 6\begin{vmatrix}
3 & t-3 & 5 \\
0 & 0 & t-3 \\
6 & 0 & 3
\end{vmatrix}
$$
which is then reduced to
$$
\det(t I - A) =
(t-5)\left((t-3)\begin{vmatrix}
t-3 & 0 \\
3 & t
\end{vmatrix}
-5\begin{vmatrix}
0 & 0\\
0 & t
\end{vmatrix} +
2\begin{vmatrix}
0 & t-3 \\
0 & 3
\end{vmatrix}
\right ) + 3\begin{vmatrix}
0 & 0 \\
0 & t \end{vmatrix} - (t-3)\begin{vmatrix}
0 & 0 \\
6 & t
\end{vmatrix} + 2\begin{vmatrix}
0 & 0\\
6 & 0
\end{vmatrix} -

6\left(3\begin{vmatrix}
0 & t-3 \\
0 & 3
\end{vmatrix} - (t-3)\begin{vmatrix}
0 & t-3 \\
6 & 3
\end{vmatrix} + 5 \begin{vmatrix}
0 & 0\\
6 & 0
\end{vmatrix}\right)
$$
It should be reasonably easy to see that all 2x2 determinants with zeroes in both diagnols equal 0, and are therefore canceled out. This yields
$$
\chi_A (x) = (t-5)(t-3)^2+6(t-3)(-6(t-3))
$$
which can be expanded to
$$
\chi_A (x)= t^4 -11t^3 + 3t^2 + 171t-324
$$
which is the characteristic polynomial of ##A##
 
  • Skeptical
Likes PeroK
  • #57
Mayhem said:
I solved part a of 4. I have no idea what "basis of an eigenspace is" so I'm going to look into that.

Let
$$A = \begin{pmatrix}
5 & 0 & 1 & 6\\
3 & 3 & 5 & 2\\
0 & 0 & 3 & 0 \\
6 & 0 & 3 & 0
\end{pmatrix}$$
And I denote a 4x4 identity matrix. Then
$$
t I - A = \begin{pmatrix}
t- 5 & 0 & 1 & 6\\
3 & t- 3 & 5 & 2\\
0 & 0 & t- 3 & 0 \\
6 & 0 & 3 & t
\end{pmatrix}
$$
The determinant can be determined through a series of calculations:
$$
\det(t I - A) = (t-5)\begin{vmatrix}
t-3 & 5 & 2\\
0 & t-3 & 0 \\
0 & 6 & t
\end{vmatrix} + \begin{vmatrix}
3 & t-3 & 2 \\
0 & 0 & 0 \\
6 & 0 & t
\end{vmatrix} - 6\begin{vmatrix}
3 & t-3 & 5 \\
0 & 0 & t-3 \\
6 & 0 & 3
\end{vmatrix}
$$
which is then reduced to
$$
\det(t I - A) =
(t-5)\left((t-3)\begin{vmatrix}
t-3 & 0 \\
3 & t
\end{vmatrix}
-5\begin{vmatrix}
0 & 0\\
0 & t
\end{vmatrix} +
2\begin{vmatrix}
0 & t-3 \\
0 & 3
\end{vmatrix}
\right ) + 3\begin{vmatrix}
0 & 0 \\
0 & t \end{vmatrix} - (t-3)\begin{vmatrix}
0 & 0 \\
6 & t
\end{vmatrix} + 2\begin{vmatrix}
0 & 0\\
6 & 0
\end{vmatrix} -

6\left(3\begin{vmatrix}
0 & t-3 \\
0 & 3
\end{vmatrix} - (t-3)\begin{vmatrix}
0 & t-3 \\
6 & 3
\end{vmatrix} + 5 \begin{vmatrix}
0 & 0\\
6 & 0
\end{vmatrix}\right)
$$
It should be reasonably easy to see that all 2x2 determinants with zeroes in both diagnols equal 0, and are therefore canceled out. This yields
$$
\chi_A (x) = (t-5)(t-3)^2+6(t-3)(-6(t-3))
$$
which can be expanded to
$$
\chi_A (x)= t^4 -11t^3 + 3t^2 + 171t-324
$$
which is the characteristic polynomial of ##A##
What are these numbers ##11, 171## and ##324##? There are no such numbers in ##\mathbb Z_7##.
 
  • #58
PeroK said:
What are these numbers ##11, 171## and ##324##? There are no such numbers in ##\mathbb Z_7##.
How do I circumvent that issue?
 
  • #59
Mayhem said:
How do I circumvent that issue?
You learn the mathematics of modular arithmetic.
 
  • #60
PeroK said:
You learn the mathematics of modular arithmetic.
So if I rewrite those numbers in the correct mod, it's otherwise correct?
 

Similar threads

  • · Replies 42 ·
2
Replies
42
Views
11K
  • · Replies 61 ·
3
Replies
61
Views
13K
  • · Replies 61 ·
3
Replies
61
Views
10K
  • · Replies 93 ·
4
Replies
93
Views
15K
  • · Replies 60 ·
3
Replies
60
Views
12K
  • · Replies 100 ·
4
Replies
100
Views
12K
  • · Replies 56 ·
2
Replies
56
Views
10K
  • · Replies 86 ·
3
Replies
86
Views
14K
  • · Replies 67 ·
3
Replies
67
Views
11K
  • · Replies 61 ·
3
Replies
61
Views
11K