Somefantastik
- 226
- 0
A = \[ \left( \begin{array}{ccc}<br />
0 & 0 & 1 \\<br />
0 & 1 & 0 \\<br />
1 & 0 & 0 \end{array} \right)\]
eigenvalues are \lambda_{1} = -1, \ \lambda_{2} = \lambda_{3} = 1
(A-\lambda_{1}I)u^{(1)} = 0 \ => \ u^{(1)} = \[ \left( \begin{array}{c}<br /> -1 \\<br /> 0 \\<br /> 1 \end{array} \right)\]
(A-\lambda_{2}I)u^{(2)} = 0 \ => u^{(1)} = \[ \left( \begin{array}{c}<br /> 1 \\<br /> 0 \\<br /> 1 \end{array} \right)\]
(A -\lambda_{3}I)u^{(3)} = u^{(2)} \ => \ <br /> \left(<br /> \begin{array}{ccc|c}<br /> 1&0&-1&-1\\<br /> 0&0 &0&1\\<br /> 0&0&0&0<br /> \end{array}<br /> \right)<br />
since we cannot have 0 = 1, we can say that there is only one eigenvector for
\lambda = 1
which means that the Jordan form will be
\[ \left( \begin{array}{ccc}<br /> 1 & 1 & 0 \\<br /> 0 & 1 & 0 \\<br /> 0 & 0 & -1 \end{array} \right)\]
Am I correct?
Now I need to find exp(Jt) and I'm not sure how.
If I only have 2 eigenvectors, how can I find the fund. matrix T such that
e^{At} = Te^{Jt}T^{-1}?
eigenvalues are \lambda_{1} = -1, \ \lambda_{2} = \lambda_{3} = 1
(A-\lambda_{1}I)u^{(1)} = 0 \ => \ u^{(1)} = \[ \left( \begin{array}{c}<br /> -1 \\<br /> 0 \\<br /> 1 \end{array} \right)\]
(A-\lambda_{2}I)u^{(2)} = 0 \ => u^{(1)} = \[ \left( \begin{array}{c}<br /> 1 \\<br /> 0 \\<br /> 1 \end{array} \right)\]
(A -\lambda_{3}I)u^{(3)} = u^{(2)} \ => \ <br /> \left(<br /> \begin{array}{ccc|c}<br /> 1&0&-1&-1\\<br /> 0&0 &0&1\\<br /> 0&0&0&0<br /> \end{array}<br /> \right)<br />
since we cannot have 0 = 1, we can say that there is only one eigenvector for
\lambda = 1
which means that the Jordan form will be
\[ \left( \begin{array}{ccc}<br /> 1 & 1 & 0 \\<br /> 0 & 1 & 0 \\<br /> 0 & 0 & -1 \end{array} \right)\]
Am I correct?
Now I need to find exp(Jt) and I'm not sure how.
If I only have 2 eigenvectors, how can I find the fund. matrix T such that
e^{At} = Te^{Jt}T^{-1}?
Last edited: