humo90
- 13
- 0
Homework Statement
How do I show that our equations for the E- and B-fields for the oscillating electric dipole do NOT satisfy Maxwell’s equations?
Homework Equations
After approximations in retarded potentials, we have our E- and B-field as following:
E = -ω2μ_{0}p_{0}(4∏r)-1sin(θ)cos[ω(t-\frac{r}{c})]\hat{θ} (Griffiths 11.18)
and
B = -ω2μ_{0}p_{0}(4∏cr)-1sin(θ)cos[ω(t-\frac{r}{c})]\hat{\phi} (Griffiths 11.19)
Where ω is angular frequency for the oscillating charge moving back and forth, c is the speed of light, r is the distance where E and B are to be calculated, θ is the angle between dipole axis and the distance r, p_{0} is the maximum value of dipole moment, μ_{0} is permeability of free space, t is time, \hat{\phi} is direction in azimuthal angle, and \hat{θ} is direction in polar angle.
The Attempt at a Solution
I got divergence of B is satisfied (2nd eq. of Maxwell's), also, I got faradays law satisfied (3rd eq. with curl of E).
I am stuck in the other two equations:
For Gauss's law (1st eq.) I got div. of E does not equal zero, but maybe that because of the charge density. So, I am not sure whether this equation is satisfied or not, and I do not know how to show that.
Also, the same argument For Curl of B. I got the same result for time derivative of E in addition to an extra component in \hat{r} direction which may be the volume current density term in 4th Maxwell's equation (Ampere's and Maxwell's law).
Last edited: