clairez93
- 113
- 0
Homework Statement
Use spherical coordinates to find the moment of inertia about the z-axis of a solid of uniform density bounded by the hemisphere \rho=cos\varphi, \pi/4\leq\varphi\leq\pi/2, and the cone \varphi=4.
Homework Equations
I_{z} = \int\int\int(x^{2}+y^{2})\rho(x, y, z) dV
The Attempt at a Solution
I tried to convert that equation to cylindrical coordinates and got this (k representing density because it's uniform)
I_{z} = k \int^{2\pi}_{0}\int^{\pi/2}_{\pi/4}\int^{1}_{0}\rho^2 sin^{2}\varphi*d\rho*d\varphi*d\theta
Plugged that into my calculator and got:
\frac{k\pi(\pi+2)}{12}
The book answer is:
\frac{k\pi}{192}
What am I doing wrong?