What is the relationship between the moment of inertia and the length of a rod?

merlos
Messages
14
Reaction score
0
The moment of inertia about an axis along the length of a rod is zero, correct?
 
Physics news on Phys.org
merlos said:
The moment of inertia about an axis along the length of a rod is zero, correct?
Almost. If the rod has a measurable radius, it is a cylinder.
 
In all the other parts ot the problem though I considered it a rod.

Here's the problem:

Find the moment of inertia about each of the following axes for a rod that is 0.280 cm in diameter and 1.70 m long, with a mass of 5.00×10−2 kg.

A. About an axis perpendicular to the rod and passing through its center.
I = (1/12)ML^2
I = .012 kgm^2

B. About an axis perpendicular to the rod passing through one end.
I = (1/3)ML^2
I = .048 kgm^2

C. About an axis along the length of the rod.
 
merlos said:
In all the other parts ot the problem though I considered it a rod.

Here's the problem:

Find the moment of inertia about each of the following axes for a rod that is 0.280 cm in diameter and 1.70 m long, with a mass of 5.00×10−2 kg.

A. About an axis perpendicular to the rod and passing through its center.
I = (1/12)ML^2
I = .012 kgm^2

B. About an axis perpendicular to the rod passing through one end.
I = (1/3)ML^2
I = .048 kgm^2

C. About an axis along the length of the rod.
The rod has a diameter. It has a moment of inertia about the long axis.
 
So, I = (1/4)MR^2 + (1/3)ML^2 ?
 
The length of the stick--or cylinder--parallel to the axis doesn't matter, only the radius.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top