Need help with transfer orbit time period

AI Thread Summary
To calculate the duration of a transfer orbit from Earth to Mars, the semi-major axis of the orbit is given as 190,100,208,000 meters. Using Kepler's third law, the period can be determined by the relationship P^2 proportional to a^3. The user initially calculated P^2 as approximately 6.8699 E 33, leading to an incorrect period value. It is emphasized that Kepler's law requires a constant of proportionality or a ratio with another known orbit to yield accurate results. Understanding these principles is crucial for accurately determining the interplanetary trip duration.
HoboMoo
Messages
2
Reaction score
0
I just don't even know where to begin. I'm not sure what formulas to use and just can't do anyhting with it. any help would be great. Thanks!

Recall that your trip to Mars is accomplished by using an elliptic transfer orbit going from Earth to Mars as shown in Fig. 1. This trajectory assumes that Earth at departure, the Sun, and Mars at arrival, are aligned. You calculated that the semi-major axis for this transfer orbit was a= 190100208000 m.

How long, in days, would the interplanetary trip last? Hint: first, determine the period of the transfer orbit.


untitled.jpg
 
Physics news on Phys.org
How about Kepler's third law?
 
So if a=190100208000m, its P^2=19010020800^3?

If that's the case, i get P^2= 6.8699 E 33 and square root that to get P?

P=8.2885 E 16?
 
Kepler's third law (in its original form) is a law of proportionality, not equality. To make it an equality you would have to use either a suitable (i.e. special) choice of units, a constant of proportionality, or form a ratio with another known pair of semi-major axis and period. So:

$$P^2 \propto T^3 $$
$$P^2 = k\;T^3$$
$$\frac{P2^2}{P1^2} = \frac{T2^3}{T1^3}$$
The last version is probably the easier to use if you happen to know of another suitable body orbiting the Sun for which you know the semi-major axis and the orbital period :wink:
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top