Normal mode of an infinite spring pendulum system

Click For Summary

Homework Help Overview

The discussion revolves around the normal modes of an infinite spring pendulum system, focusing on the derivation of dispersion relations and the behavior of the system under specific conditions. Participants are exploring the mathematical relationships governing the motion of the blocks in the system.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the derivation of dispersion relations and the form of the normal modes. There is an exploration of substituting exponential decay functions into the equations of motion and how this affects the resulting dispersion relations.

Discussion Status

Some participants have provided alternative expressions for the dispersion relations and are considering how to incorporate previously derived values into these new equations. There is an ongoing examination of the implications of these substitutions, with no clear consensus yet on the correctness of the approaches taken.

Contextual Notes

Participants are working under the constraints of the problem's requirements, including the need to derive relationships without reaching definitive conclusions. The discussion includes considerations of the assumptions made regarding the form of the normal modes and the implications of these assumptions on the derived equations.

Miles123K
Messages
57
Reaction score
2
Homework Statement
The problem description is as follows. I am expected to find the frequency of the standing wave apparently.
Relevant Equations
F = ma
242922

First I worked out the dispersion relations, which is pretty easy:
##M \ddot x_j = K x_{j-1} + K x_{j+1} - 2K x_j -mg \frac {x_j} {l} ## (All t-derivatives)
We know ##x_j## will be in the form ##Ae^{ijka}e^{-i\omega t}##
so the above becomes:
## -\omega^2M = K (e^{-ika}+e^{ika}-2)-\frac {g} {l}##
Use trig identities to simplify and we get:
## \omega^2 = \frac {4K} {M} sin^2(\frac {ka} {2}) + \frac {g} {l}##
Now I think I am supposed to consider the forces on Block 0, so:
##F_{left} + F_{right} = F_0 = M \ddot x_0##
## K x_{j-1} + K x_{j+1} - 2K x_j = M \ddot x_0 = -M \omega^2 x_0## I think this is the subsystem mentioned in the hint?
In the question, it mentioned considering a normal mode of the form:
##A(x) = A_0 e^{-k \left| x \right |}##
So, I just plugged that into the above equation and got something like:
##2Ke^{-ka} = 2K - m \omega^2##
##e^{-ka} = 1 - \frac {m \omega^2} {2K}##
Log the above:
##ka = - ln(1-\frac {m \omega^2} {2K})##
However, I am unsure whether this is the correct solution. Do I just plug this ##ka## into the dispersion relations we got earlier?
Could someone check my answer?
 
Physics news on Phys.org
Miles123K said:
First I worked out the dispersion relations, which is pretty easy:
##M \ddot x_j = K x_{j-1} + K x_{j+1} - 2K x_j -mg \frac {x_j} {l} ## (All t-derivatives)
We know ##x_j## will be in the form ##Ae^{ijka}e^{-i\omega t}##


The factor ##e^{ijka}## implies that the amplitudes of the blocks vary sinusoidally in space. But in this problem, you are looking for a mode for which the amplitudes exponentially decay as you move away from the origin. Replace ##e^{ijka}## by an appropriate expression and rederive the dispersion relation. Use the dispersion relation in conjunction with the equation of motion of block 0.
 
  • Like
Likes   Reactions: Miles123K
TSny said:
The factor ##e^{ijka}## implies that the amplitudes of the blocks vary sinusoidally in space. But in this problem, you are looking for a mode for which the amplitudes exponentially decay as you move away from the origin. Replace ##e^{ijka}## by an appropriate expression and rederive the dispersion relation. Use the dispersion relation in conjunction with the equation of motion of block 0.
Oh okay, the new dispersion relations I obtained are as follows:
##\omega^2=\frac {K} {m} (2 - e^{ka} - e^{-ka}) + \frac {g} {l}##
which simplifies to:
##\omega^2=\frac {2K} {m} (1 - cosh(ka)) + \frac {g} {l}##
If I plug in the ##ka## I got above I get the answer?
 
Miles123K said:
Oh okay, the new dispersion relations I obtained are as follows:
##\omega^2=\frac {K} {m} (2 - e^{ka} - e^{-ka}) + \frac {g} {l}##
which simplifies to:
##\omega^2=\frac {2K} {m} (1 - cosh(ka)) + \frac {g} {l}##
That looks good.
If I plug in the ##ka## I got above I get the answer?
That should work. Off hand, I don't see a way to avoid some messy algebra. You could simplify the writing a bit by defining ##\omega_s = \sqrt{\frac{2K}{M}}## and ##\omega_p = \sqrt{\frac{g}{l}}##.
 
  • Like
Likes   Reactions: Miles123K

Similar threads

Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
Replies
4
Views
2K
Replies
9
Views
2K
  • · Replies 24 ·
Replies
24
Views
1K
Replies
17
Views
3K
Replies
1
Views
1K
Replies
20
Views
2K