Nuclear Model - Expression for Total Energy [Modern Physics]

AI Thread Summary
The discussion focuses on deriving the total energy expression for assembling a charged sphere representing a nucleus with atomic number Z and radius R, assuming a uniform volume charge density. The key equation provided is U = 3k * (Ze)² / 5R, which relates to the potential energy in the system. Participants discuss the relevance of kinetic energy during alpha particle collisions and the gravitational analog of potential energy for a sphere. Tips are shared on considering infinitesimal spherical shells to calculate the total potential energy. The original poster successfully derives the proof after receiving guidance from the discussion.
twotaileddemon
Messages
258
Reaction score
0

Homework Statement



Derive an expression for the total energy required to asemble a sphere of charge corresponding to a nucleus of atomic number Z and radius R. Assume the nucleus is a sphere of uniform volume charge density \rho

Homework Equations



\rho = mass / volume = 3Am / 4*pi*R3

The Attempt at a Solution



I know the solution is U = 3k * (Ze)2 / 5R, so I need to work on deriving this.

I also know that when an alpha particle collides with the nucleus, the initial kinetic energy is equal to the electrical potential energy of the system and is given by
.5mv2 = kq1q2/r = k(2e)(Ze)/d where d = 4kZe2 / mv2

Not sure how this helps though, but it seems to be in a relevant section in the textbook. There is also info on the binding energy, but it doesn't seem applicable in this case.

Any tips on how to approach the problem, please?
 
Physics news on Phys.org
Have you ever learned of the gravitational analog? Wherein the gravitational potential energy of a sphere of mass M and radius R is -3/5GM^2/R?

You can apply that analog perfectly to this case.

If you haven't seen that. Consider a spherical shell (infinitessimal thickness), what is the potential energy of this shell? How would I go about adding up all these spherical shells to form a sphere?
 
Matterwave said:
Have you ever learned of the gravitational analog? Wherein the gravitational potential energy of a sphere of mass M and radius R is -3/5GM^2/R?

You can apply that analog perfectly to this case.

If you haven't seen that. Consider a spherical shell (infinitessimal thickness), what is the potential energy of this shell? How would I go about adding up all these spherical shells to form a sphere?

I think I remember learning about that in a different course, let me check my notes and I'll get back to you. Thanks for the tip!

EDIT 4/19: I was able to figure out how to derive the proof. Thank you!
 
Last edited:
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top