Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Nuclear physics: neutral atomic mass vs. atomic mass

  1. May 17, 2010 #1
    1. The problem statement, all variables and given/known data

    I am preparing a presentation on nuclear reactor technology.

    To demonstrate the mass-energy equivalence, I am trying to calculate the binding energy of some heavier isotopes. The problem is that, when I substitute the values that I have into the equation, I get a binding energy that is substantially below what I have found in a range of sources.

    2. Relevant equations

    [tex]E_{B} = (Zm_{p}+Nm_{n}-^{A}_{Z}m)c^{2}[/tex]

    3. The attempt at a solution

    Substitution, using uranium 235 as an example:

    [tex]E_{B} = ((143*1.007974)+(92*1.0086649156)-235.04393005)931.5*10^{6}\frac{eV}{c^{2}} [/tex]

    [tex]=1763.81777851379 MeV[/tex]

    But the binding energy reported in the same source that the atomic mass came from was 1783.890991 MeV, which is substantially more than my result.

    I understand that I need to be using the neutral atomic mass, but quite honestly, I don't know what that means exactly, and I don't know where to find it. I tried subtracting the electron masses from the atomic mass, but then I ended up with a binding energy that was too large.

    A textbook I have used an abridged table that was lifted from a nuclear physics textbook (which I don't have).

    What am I doing wrong here?
    Last edited: May 17, 2010
  2. jcsd
  3. May 17, 2010 #2

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

    It would help to explain the concept. The binding energy is the difference in mass between the nucleus and the separated nucleons x c^2.

    So you have the right concept. But you have to use the atomic mass of just the U235 nucleus. You are using the atomic mass of the whole U235 atom.

    If you use the neutral atomic mass, you have to include the mass of 92 electrons (one for each proton). Then you can use the atomic mass of the whole U235 atom (which includes 92 electrons).

    Last edited: May 18, 2010
  4. May 18, 2010 #3
    Yike. I must have been tired when I did this.

    My first mistake was switching the neutron and proton numbers.

    Secondly, my notation was not correct. The first mass is in fact the mass of the complete hydrogen atom, including electrons, so it does balance out the mass of the neutral U-235 atom. Perhaps the notation should have looked like this:

    E_{B} = (Zm_{H}+Nm_{n}-^{A}_{Z}m)c^{2}

    Now, the number looks a bit better, though still off:

    E_{B} = ((92*1.007974)+(143*1.0086649156)-235.04393005)931.5*10^{6}\frac{eV}{u}

    =1796.64076046521 MeV

    But all the sources I have show a binding energy of 1783 MeV for the first four significant digits. That's an error of 0.72%. Less than one, sure, but I would expect, using reliable sources, to get at least those first four digits correct. What's wrong?

    Here are my sources:

    For the hydrogen mass: http://www.iupac.org/publications/pac/2006/pdf/7811x2051.pdf (IUPAC)

    For the neutron mass: http://pdg.lbl.gov/2006/tables/bxxx.pdf (Lawrence Berkeley Lab)

    For the uranium-235 mass: http://t2.lanl.gov/cgi-bin/quecalc?192,335 (that's from Los Alamos).
    Last edited by a moderator: Apr 25, 2017
  5. May 18, 2010 #4

    Andrew Mason

    User Avatar
    Science Advisor
    Homework Helper

Share this great discussion with others via Reddit, Google+, Twitter, or Facebook