Number of modes in Cubic Cavity

AI Thread Summary
To calculate the number of modes in a cubic cavity of length 2.5 cm within the wavelength interval of 500 nm to 501 nm, use the formula N = (8π/3)*(a/λ)^3 for both wavelengths and find the difference, N1 - N2. The average energy per mode can be determined using either the Rayleigh-Jeans or Planck's formula, depending on the context. The approach of multiplying the number of modes by the average energy is valid for finding the total energy radiated from the cavity at a constant temperature of 1500 K. Additionally, for small wavelength differences, taking the derivative can provide a more precise calculation of the number of modes. This method effectively addresses the problem posed.
Keiner Nichts
Messages
13
Reaction score
1

Homework Statement


Calculate the number of modes in a cubic cavity of length a=2.5 cm in the wavelength interval (λ1,λ2) where λ1=500 nm and λ2=501 nm. What's the total energy which radiates from the cavity if it's kept at a constant temperature of T=1500 K.

Homework Equations


I imagine these would be rather relevant: Number of modes in a cavity N= (8π/3)*(a/λ)^3 and the average energy for each mode which would be either k*T if we work with Rayleigh-Jeans or hν/e^(hν/kT)-1 if we work with Planck's derivation.

The Attempt at a Solution


I thought of simply finding the number of modes as N1-N2 where N1 is the number for λ1 and N2 for λ2, and then multiplying by the average energy (Which, could someone please double-check that formula? I might have misinterpreted it as average energy of a mode and it might be something different.) Of course, if we use Planck's formula I would find the frequency as being c/λ so no biggie there. I just want to know if it's the correct way to go about it.
 
Physics news on Phys.org
Keiner Nichts said:

Homework Statement


Calculate the number of modes in a cubic cavity of length a=2.5 cm in the wavelength interval (λ1,λ2) where λ1=500 nm and λ2=501 nm. What's the total energy which radiates from the cavity if it's kept at a constant temperature of T=1500 K.

Homework Equations


I imagine these would be rather relevant: Number of modes in a cavity N= (8π/3)*(a/λ)^3 and the average energy for each mode which would be either k*T if we work with Rayleigh-Jeans or hν/e^(hν/kT)-1 if we work with Planck's derivation.

The Attempt at a Solution


I thought of simply finding the number of modes as N1-N2 where N1 is the number for λ1 and N2 for λ2, and then multiplying by the average energy (Which, could someone please double-check that formula? I might have misinterpreted it as average energy of a mode and it might be something different.) Of course, if we use Planck's formula I would find the frequency as being c/λ so no biggie there. I just want to know if it's the correct way to go about it.
Your formula are correct. And yes you may calculate N1-N2 that way. In this case, since the difference of wavelength is small compared to the wavelengths themselves, one could also take the derivative to find dN in terms of ##d \lambda## and use that to get dN directly.
 
  • Like
Likes Keiner Nichts
Thank you! As for the radiant energy, would mere multiplication with N give me the right answer? I see no reason why it should not, just making sure.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top