On a silly electric field question.

AI Thread Summary
The discussion revolves around calculating the electric field intensity at point O, located between two charges: +q at point A and +2q at point B, which is 2r to the right of A. The initial assumption was that the electric fields from both charges would cancel each other out, leading to a total electric field of zero. However, the correct approach involves recognizing that the electric fields due to both charges at point O do not cancel because they are both directed away from the charges, resulting in a net electric field. The total electric field at O is calculated as E(T) = (3kq)/(r^2), confirming that the fields add rather than cancel. Understanding the vector nature of electric fields is crucial for accurately determining the resultant field at a point.
physikamateur
Messages
12
Reaction score
0

Homework Statement


This question is actually the simplification of a more complicated one. A particle of charge +q is placed at a point A while another particle of charge +2q is placed at B, a distance of 2r to the right of A. The midpoint between the distance is denoted as O. What is the electric field intensity at O ?


Homework Equations


E=F/q


The Attempt at a Solution


Honestly, if particle A has a charge of +q and if B has a charge of +q, then the electric field at O ought to be zero as they cancel each other out. But I can't understand it mathematically. Suppose I consider the electric field at point O due to the particle at A, then it's electric field E(A)=(kq)/(r^2) and the electric field at point O due to particle B E(B)=(k2q)/(r^2) where k=(1/4∏ε0) Hence the total electric field E(T)=E(A)+E(B)=(3kq)/(r^2) ? Isn't it supposedly zero ? One might say that I ought to subtract them, but my textbook says that the electric field due to multiple charges is the vector sum of the individual electric fields. (Like the principle of superposition). Please advise on my mistake. Thank you.

 
Physics news on Phys.org
Correction: What I meant to say was "Honestly, if particle A has a charge of +q and if B has a charge of -q, then the electric field at O ought to be zero as they cancel each other out."
 
physikamateur said:

Homework Statement


This question is actually the simplification of a more complicated one. A particle of charge +q is placed at a point A while another particle of charge +2q is placed at B, a distance of 2r to the right of A. The midpoint between the distance is denoted as O. What is the electric field intensity at O ?

Homework Equations


E=F/q

The Attempt at a Solution


Honestly, if particle A has a charge of +q and if B has a charge of +q, then the electric field at O ought to be zero as they cancel each other out. But I can't understand it mathematically. Suppose I consider the electric field at point O due to the particle at A, then it's electric field E(A)=(kq)/(r^2) and the electric field at point O due to particle B E(B)=(k2q)/(r^2) where k=(1/4∏ε0) Hence the total electric field E(T)=E(A)+E(B)=(3kq)/(r^2) ? Isn't it supposedly zero ? One might say that I ought to subtract them, but my textbook says that the electric field due to multiple charges is the vector sum of the individual electric fields. (Like the principle of superposition). Please advise on my mistake. Thank you.

You have only considered the magnitude of the electrics field. The electric field due to one of the charges is in a direction directly opposite of the field due to the other, so the magnitudes subtract as the vectors add.
 
Understood. But in finding the electric field at O while working the equations, do I consider a ficticious charge to be present at O say q1 so that E(A)=[((k)(q)(q1))/(r^2)]/(q1) and the q1 cancels off to give E(A)=(kq)/(r^2) ? Moreover pertaining to the initial question, the electric field at O (E) due to +2q and +q is: E=(3kq)/(r^2) ?? Since both are positively charged and the addition of the vectors does not subtract ??
 
physikamateur said:
Correction: What I meant to say was "Honestly, if particle A has a charge of +q and if B has a charge of -q, then the electric field at O ought to be zero as they cancel each other out."

No.You consider that there is a +q at O.So the one has a charge of +q one would push it away(eh,do you call it like that in English), whereas the one with the charge of -q would pull it towards itself.So both the vectors are the same way.You take the sum of it.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top