Particle motion + electric field when voltage varies

AI Thread Summary
The discussion centers on the motion of electrons between two parallel plates with a potential difference, analyzing how changes in voltage affect their impact position on a fluorescent screen. The initial and final energies of the electrons are equated, leading to a derived expression for the final velocity based on the electric force. The motion is decomposed into constant horizontal and accelerated vertical components, allowing for calculations of time and distance traveled. A final equation is presented to express the impact position as a function of voltage, with a request for validation of its accuracy and relevance to the original question. The conversation highlights the importance of careful derivation and simplification in physics problems.
RmsAdd
Messages
2
Reaction score
0

Homework Statement


Two parallel plates located at a distance "L" from each other they maintain a potential difference "V" because of a battery (as shown in the picture). Through a small hole, made in bottom plate, electrons get into system (with mass "m" and charge "-e"), with velocity "v" and forming a θ angle with the perpendicular direction of the plate. A flourescent screen at the top plate allows to determine where the electrons impact.

If there is a small change dV at the potential difference betwen the plates. Where and how much the position where electrons impact varies? (Do not matter about relativism effects and cuatic effects). Make a scheme about the dependency of that variation with the velocity v and the angle θ.
Picture.PNG


Dos placas paralelas situadas a distancia L una de la otra, se mantienen a una diferencia de potencial V por medio de una batería, como muestra la figura. Por un pequeño orificio practicado en la placa de abajo ingresan electrones (de masa m y carga -e), con una velocidad v y formando un angulo θ con la dirección perpendicular a la placa. Una pantalla fluorescente en la placa de arriba permite determinar dónde inciden los electrones.
Si se produce un pequeño cambio dV en la diferencia de potencial entre las placas, ¿Cómo y cuanto varía la posición donde inciden los electones? (despreciar efectos relativistas y cuánticos). Realizar un grafico esquematico que ilustre la dependencia de esta variación con la velocidad v y el angulo θ
problem.png

Homework Equations

The Attempt at a Solution


Energy analisis:

The initial energy and the final energy have to be the same.
E_{f}=E{i}
E_{kf}=E_{ki}+U_{e}
\frac12 \cdot m \cdot v_{f}^{2}=\frac12 \cdot m \cdot v_{i}^{2}+F_{e} \cdot L
v_{f}=\sqrt{ v_{i}^{2}+ \frac{2 \cdot F_{e} \cdot L}{m}}\qquad \text{(1)}

Motion analisis:

\Sigma F_{x}=0
v_{x}=constant
\Sigma F_{y}=m \cdot \vec{a}

So we have a constant uniform motion in x-axis and a constant aceleration in y-axis. I can find the final velocity in y-axis using Pythagorean teorem
pitagoras.png

v_{f}^2=v_x^2 + v_{fy}^2
v_{fy}=\sqrt{v_f^2 - v_x^2}

In y-axis aceleration is constant so I can do:
V_{m}=\frac{v_{fy}+v_{iy}}{2}
V_{m}=\frac{\Delta y}{\Delta t}
\Delta t=\frac{2 \Delta y}{v_{fy}+v_{iy}} \qquad \text{(2)}
This is the time that it takes to the particle in order to reach the top plate. I can use \Delta t to get x-axis distance.
v_x=\frac{\Delta x}{\Delta t}
x=v_x \cdot \Delta t

Replacing with (2):
x=v_x \cdot \frac{2 \Delta y}{v_{fy}+v_{iy}}
\Delta y=L
v_x=\sin \theta \cdot v_i
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_f^2-v_x^2}+v_i \cdot \cos \theta}

Replacing vf with (1) and replacing vx:
Edit: I've made a mistake replacing vx^2
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot v_f^2}+v_i \cdot \cos \theta}

x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot \left(v_i^2+\frac{2 \cdot F_e \cdot L}{m} \right)}+v_i \cdot \cos \theta}
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot v_i^2 + \sin^2 \theta \cdot \frac{2 \cdot F_e \cdot L}{m}}+v_i \cdot \cos \theta}
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2(1- \sin^2 \theta) +\frac{2 \cdot F_e \cdot L}{m}(1+\sin^2 \theta)}+ \cos \theta \cdot v_i}

x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2+\frac{2 \cdot F_e \cdot L}{m}-\sin^2 \theta \cdot v_i^2}+v_i \cdot \cos \theta}
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{\sqrt{v_i^2 \left( 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta \right) }+v_i \cdot \cos \theta}
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{v_i \sqrt{ 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta }+v_i \cdot \cos \theta}
x=\frac{2 \cdot L \cdot v_i \cdot \sin \theta}{v_i \left( \sqrt{ 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta \right)}
x=\frac{2 \cdot L \cdot \sin \theta}{\sqrt{ 1+ \frac{2 \cdot F_e \cdot L}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta}

Finally I know that:
V=\frac{U_e}{q}=\frac{F_e \cdot L}{q}
F_e \cdot L=V \cdot q

x=\frac{2 \cdot L \cdot \sin \theta}{ \sqrt{ 1+ \frac{2 \cdot V \cdot q}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta}

Now I've an equation which gives me the position as function of voltage. Can I do \frac{\partial x}{\partial V} in order to obtain how much the position varies in relation with small variation \partial V?

Am I doing it in a adequated way (I think that it's a really ugly equation)? Or should I consider other factors?
 

Attachments

  • Picture.PNG
    Picture.PNG
    1.2 KB · Views: 327
  • problem.png
    problem.png
    40.8 KB · Views: 575
  • pitagoras.png
    pitagoras.png
    2 KB · Views: 277
Last edited:
Physics news on Phys.org
Your idea is correct. However, you have some errors in your derivation of ##x(V)##. For example, you have used ##v_x^2 = v_f^2 \sin^2\theta## rather than ##v_x^2 = v_i^2 \sin^2\theta##.
 
  • Like
Likes RmsAdd
Thank you very much @Orodruin !
I corrected it.
Then I've to do \frac{\partial x}{\partial V}.
x(V)=\frac{2 \cdot L \cdot \sin \theta}{ \sqrt{ 1+ \frac{2 \cdot V \cdot q}{m \cdot v_i^2}-\sin^2 \theta }+ \cos \theta}
\frac{\partial x}{\partial V} = \frac{ \frac{-2L \sin \theta \cdot \frac{2q}{m \cdot v_i^2} }{2 \sqrt{1+\frac{2Vq}{m \cdot v_i^2}-\sin^2 \theta}} }{ \left( \cos \theta + \sqrt{1+\frac{2Vq}{m \cdot v_i^2} - \sin^2 \theta } \right)^2 }
\frac{\partial x}{\partial V} = \frac{ -2Lq \sin \theta }{ m \cdot v_i^2 \left( \cos \theta + \sqrt{1+\frac{2Vq}{m \cdot v_i^2}-\sin^2 \theta } \right) ^2 \sqrt{ 1+\frac{2Vq}{m \cdot v_i^2}-\sin^2 \theta } }

Does that equation answers the question about "Where and how much the position where electrons impact varies" or should I find something else?
 
Last edited:
RmsAdd said:
cuatic effects
For your information, the English is "quantum effects".
I would have treated it like a gravitational trajectory question, using the SUVAT equations, but it's probably no simpler.
You could simplify your final expression a bit by collapsing 1-sin2 to cos2 and creating a name for the group ##\frac{2q}{mv_i^2}##, which occurs in three places.
 
  • Like
Likes RmsAdd
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top