Point charges acting on a point

AI Thread Summary
The discussion revolves around calculating the charge q at the vertices of an equilateral triangle, given a fourth charge of 2 µC below the triangle that experiences zero net force. The forces acting on the 2 µC charge from the other three charges must be analyzed, particularly focusing on the x and y components. The forces from the negative charge and the two equal charges q must balance out, leading to equations that can be solved for q. The symmetry of the setup simplifies the calculations, allowing for the cancellation of x-components. Ultimately, the second equation derived from the y-components will enable the determination of the unknown charge q.
fal01
Messages
14
Reaction score
0

Homework Statement



Three point charges are located at the vertices of an equilateral triangle. The charge at the top vertex of the triangle is -4.4 µC. The two charges q at the bottom vertices of the triangle are equal. A fourth charge 2 µC is placed below the triangle on its symmetryaxis, and experiences a zero net force from the other three charges, as shown in the figure below. Find q.
One side of the triangle is 7.3m. The distance from 2 µC to the triangle is 4.8m.

-4.4 µC {1}
2 µC {2}

Homework Equations



F=kQ1Q2/r^2
E=kQ/r^2

The Attempt at a Solution



F (1 on q)= k (-4.4*10^-6)q/7.3^2

(7.3/2)^2+(4.8)^2=b^2
=6.03

F(2 on q)=k(2*10^-6)q/6.03^2
 
Physics news on Phys.org
fal01 said:

Homework Statement



Three point charges are located at the vertices of an equilateral triangle. The charge at the top vertex of the triangle is -4.4 µC. The two charges q at the bottom vertices of the triangle are equal. A fourth charge 2 µC is placed below the triangle on its symmetryaxis, and experiences a zero net force from the other three charges, as shown in the figure below. Find q.
One side of the triangle is 7.3m. The distance from 2 µC to the triangle is 4.8m.

-4.4 µC {1}
2 µC {2}

Homework Equations



F=kQ1Q2/r^2
E=kQ/r^2


The Attempt at a Solution



F (1 on q)= k (-4.4*10^-6)q/7.3^2

(7.3/2)^2+(4.8)^2=b^2
=6.03

F(2 on q)=k(2*10^-6)q/6.03^2
You actually want to calculate the forces on the 2 uC charge, not on the q's, since the problem tells you the net force on that charge is 0.
 
So something like this?

F (1 on 2)= k (4.4*10^-)(2*10^-6)/(11.12)^2

F(q on 2)= k*Q*(2*10^-6)/(6.03)^2
 
Yes, and just remember you need to sum them as vectors.
 
So F(1 on 2)x=0
F(1 on 2) y=6.305*10^-4

but how do I apply this to F(q on 2)

F(q on 2)x= F(q on 2) Cos 60
F(q on 2)y= F(q on 2) Sin 60

but F(q on 2)= k*Q*(2*10^-6)/(6.03)^2

and Q is unknown...

also would 2F(q on 2)+F(1 on 2)=0
 
fal01 said:
So F(1 on 2)x=0
F(1 on 2) y=6.305*10^-4

but how do I apply this to F(q on 2)

F(q on 2)x= F(q on 2) Cos 60
F(q on 2)y= F(q on 2) Sin 60

but F(q on 2)= k*Q*(2*10^-6)/(6.03)^2

and Q is unknown...

also would 2F(q on 2)+F(1 on 2)=0
Pretty close. I think you have the right idea.

For simplicity, let's assume q is positive. The force of charge 1 on charge 2 will point up. The force of a q-charge on charge 2 will point away from the q. So in component form, you have
\begin{align*}
\sum F_x &= F_{q~\textrm{on}~2} \cos 60 - F_{q~\textrm{on}~2} \cos 60 = 0 \\
\sum F_y &= F_{1~\textrm{on}~2} - 2F_{q~\textrm{on}~2} \sin 60 = 0
\end{align*}
The first equation simply tells you the x-components cancel out, regardless of what q is, which you could have deduced beforehand based on symmetry. The second equation is the one that will let you solve for q.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top