Polar Coordinates volume question

gr3g1
Messages
71
Reaction score
0
http://containsno.info/mq.JPG

The problem says evaluate the double integral (x + y)dA over the dark region shown in the Figure:

I set up the integrals like this:

\int_{0}^{\pi /2}\int_{2sin\o }^{2} (rcos\o + rsin\o)rdrd\o

Is this correct?

Thanks a lot everyone
 

Attachments

  • mq.PNG
    mq.PNG
    1.1 KB · Views: 431
  • mq.JPG
    mq.JPG
    5.4 KB · Views: 396
Last edited by a moderator:
Physics news on Phys.org
i can't see your pic, but the limts on you intergration say its:

the +x, +y quandrant (0,pi/2)
and the radius varies from the curve defined by r = 2sin(phi) and the circle of radius 2
 
looks ok to me...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top