Probability of finding a particle given psi squared graph

AI Thread Summary
The discussion focuses on calculating the probability of finding an electron in a specified width based on its probability density function, psi squared. The user initially struggles with integrating the probability density over a defined range and understanding how to derive psi squared from the graph. They calculate the area of a triangle to find the probability at x = 0 but express confusion about incorporating the position into their calculations. After attempting an analogy from a textbook problem, they arrive at a solution for the probability at x = 0. The conversation highlights the complexities of applying quantum mechanics concepts to practical calculations.
Linus Pauling
Messages
187
Reaction score
0
1.
knight_Figure_39_13.jpg

The figure shows the probability density for an electron that has passed through an experimental apparatus. What is the probability that the electron will land in a 2.40×10−2-mm-wide strip at:

I'm then asked the probability of finding a particle at various spots on the x-axis. We'll go with x = 0.0 here.




2. P(x)*delta(x) = psi2*delta(x)



3. The big triangle has area 0.5(2mm)(0.5) = 0.5mm2. I then integrated from -1.2*10-2 to +1.2*10-2 because that width is centered around the 0.0 point of interest. I then evaluated the solution, 0.5x, at the boundaries, obtaining an answer of 0.012... although I don't think I'm going about this quite right.
 
Physics news on Phys.org
I know that P will be psi(x) squared multiplied about the length L given in the problem. However, from the graph I can get the integral of psi squared, which is simply the area under the curve. How do I compute psi squared itself?
 
I know this is probably simple but I just don't see it. I don't see how to get an equation that's a function of x that I can plug my x values into. For example, when it asks me for the probability at x=o over a length L, I know that the integral of psi squared is just (1/2)bh = 0.5, but it can't be that I just multiply that by L because the position x didn't play a role...
 
Really lost here...

I just tried solving it using a problem in my book as an analogy. For the probability at x = 0:

I said that the equation describing one half of the "big triangle" is 0.50(1-x/1nm), which is psi squared. Solving with x = zero then multiplying by two to account for the otehr half of the triangle, I get 0.5*2 = 1, which I multiplied by 2.4*10^-2 = 0.024

?
 
Nevermind got em
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top