Problem with series convergence — Taylor expansion of exponential

Amaelle
Messages
309
Reaction score
54
Homework Statement
problem with serie convergence (look at the image)
Relevant Equations
taylor serie expnasion, absolute convergence, racine test
Good day

1612106724444.png


and here is the solution, I have questions about
1612107099220.png


I don't understand why when in the taylor expansion of exponential when x goes to infinity x^7 is little o of x ? I could undesrtand if -1<x<1 but not if x tends to infinity?
many thanks in advance!
 

Attachments

  • 1612106657426.png
    1612106657426.png
    29.7 KB · Views: 180
Last edited by a moderator:
Physics news on Phys.org
##n^7\neq o(n)##. I assume you meant the part where it says ##n^7=o(2^{n/2})##. Since ##\sqrt{2}>1##, ##2^{n/2}## dominates any power function as ##n\rightarrow\infty##.
 
Exactely, I would be extremely grateful if you could elaborate more about this point!
 
Sure. I assume you don’t understand why exponentials dominate power functions? Here is a simple proof: $$\log\frac{n^k}{b^n}=k\log(n)-n\log(b)$$ which tends to ##-\infty## as ##n\rightarrow\infty##, provided that ##\log(b)>0##. Thus, taking the exponential of both sides shows that $$\lim_{n\rightarrow\infty}\frac{n^k}{b^n}=\lim_{n\rightarrow\infty}e^{k\log(n)-n\log(b)}=0.$$
 
thanks a million! you nail it!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top