Projectile Motion - find initial velocity, flight time and max height

AI Thread Summary
The discussion focuses on solving a projectile motion problem involving a golf ball shot from a height of 6.5 ft at a 45° angle, landing 39 ft and 3 inches away. The initial velocity was calculated using the range formula, yielding approximately 10.82 m/s. The flight time was approached by splitting the motion into two phases, but confusion arose in determining the time for the ball to drop the remaining height after reaching its peak. The maximum height was computed to be around 4.96 m. Overall, the problem highlights the complexities of projectile motion calculations and the importance of breaking them down into manageable parts.
kgal
Messages
41
Reaction score
0

Homework Statement


a golf ball is shot from a height of 6.5 ft above the ground at an angle of 45° above the horizontal. The ball lands 39 ft and 3 inches downfield. Assuming ideal projectile motion find:
a. Initial velocity
b. flight time
c. maximum height


Homework Equations


r = [(v0*cosθ)t ]i + ((v0*sinθ)t - 1/5gt^2)j.


The Attempt at a Solution


I have attached my work (problem 5) but can't seem to know if it correct. I have converted all of my units to metric because gravity is know as 9.8 m/s^2.
 
Physics news on Phys.org
kgal,
From what I can gather, you don't have enough information given to you to solve for velocity, time of flight and maximum height directly. Try drawing what you see. The best method I use to solve projectile motion problems is to split the problem up into two parts - the object rising, & then falling.

Also, I can't see your work.
 
I used the definition of range to solve for initial velocity:
a.R = (v0cosθ)*[(2v0sinθ)/g]
solved for v0 = sqrt (Rg / 2cosθsinθ) = 10.82 m/s.

b. I split the problem into two pieces, the time it takes the ball to reach the horizontal
t1 = 2v0sinθ / g = 23.9 s
Then got stuck on finding out the time it took the ball to drop the remaining 1.98 m...
I tried finding t2 by using r = (v0cos45)t + (v0sin45t - 1/2 gt^2) and solve for t, but got to the point where t was a quadratic equation with 2 answers, t = 3.1 or 0.13 seconds...

c. y max = y0 + (v0sinθ) ^2 / 2g = 4.96 m
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top