Proof for Convergent of Series With Seq. Similar to 1/n

The-Mad-Lisper
Messages
12
Reaction score
1

Homework Statement


\sum\limits_{n=1}^{\infty}\frac{n-1}{(n+2)(n+3)}

Homework Equations


S=\sum\limits_{n=1}^{\infty}a_n (1)
\lim\limits_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}\gt 1\rightarrow S\ is\ divergent (2)
\lim\limits_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}\lt 1\rightarrow S\ is\ convergent (3)
\sum\limits_{n=1}^{\infty}\mid a_n\mid\ is\ convergent\ \land\ \mid b_n \mid\ \leq\ \mid a_n \mid\ for\ every\ n\rightarrow \sum\limits_{n=1}^{\infty}\mid b_n\mid\ is\ convergent (4)

The Attempt at a Solution


I suspect that the given series is divergent, thus the series would not be convergent. Thus I take the contrapositive of statement 4 which comes out to be \sum\limits_{n=1}^{\infty}\mid b_n\mid\ is\ divergent\ \land\ \mid b_n \mid\ \leq\ \mid a_n \mid\ for\ every\ n\rightarrow \sum\limits_{n=1}^{\infty}\mid a_n\mid\ is\ divergent.
Let a_n=\frac{n-1}{(n+2)(n+3)} and b_n = \frac{1}{n}. The statement \mid b_n \mid\ \leq\ \mid a_n is never true in the domain [1,\infty), so we cannot say that a_n is divergent. Any suggestions?
 
Physics news on Phys.org
The-Mad-Lisper said:

Homework Statement


\sum\limits_{n=1}^{\infty}\frac{n-1}{(n+2)(n+3)}

Homework Equations


S=\sum\limits_{n=1}^{\infty}a_n (1)
\lim\limits_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}\gt 1\rightarrow S\ is\ divergent (2)
\lim\limits_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}\lt 1\rightarrow S\ is\ convergent (3)
\sum\limits_{n=1}^{\infty}\mid a_n\mid\ is\ convergent\ \land\ \mid b_n \mid\ \leq\ \mid a_n \mid\ for\ every\ n\rightarrow \sum\limits_{n=1}^{\infty}\mid b_n\mid\ is\ convergent (4)

The Attempt at a Solution


I suspect that the given series is divergent, thus the series would not be convergent. Thus I take the contrapositive of statement 4 which comes out to be \sum\limits_{n=1}^{\infty}\mid b_n\mid\ is\ divergent\ \land\ \mid b_n \mid\ \leq\ \mid a_n \mid\ for\ every\ n\rightarrow \sum\limits_{n=1}^{\infty}\mid a_n\mid\ is\ divergent.
Let a_n=\frac{n-1}{(n+2)(n+3)} and b_n = \frac{1}{n}. The statement \mid b_n \mid\ \leq\ \mid a_n is never true in the domain [1,\infty), so we cannot say that a_n is divergent. Any suggestions?
That's a good idea, comparing with the harmonic series ##\sum \frac{1}{n}##.

Hint: ##\frac{n-1}{n+2}## is close to 1 for large n.
 
@The-Mad-Lisper Have you studied the limit comparison test yet?
 
  • Like
Likes The-Mad-Lisper
LCKurtz said:
@The-Mad-Lisper Have you studied the limit comparison test yet?
Only after the fact, I managed to modify Nicole Oresme's proof of the divergent nature of a harmonic series.
 
The-Mad-Lisper said:

Homework Statement


\sum\limits_{n=1}^{\infty}\frac{n-1}{(n+2)(n+3)}

Homework Equations


S=\sum\limits_{n=1}^{\infty}a_n (1)
\lim\limits_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}\gt 1\rightarrow S\ is\ divergent (2)
\lim\limits_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}\lt 1\rightarrow S\ is\ convergent (3)
\sum\limits_{n=1}^{\infty}\mid a_n\mid\ is\ convergent\ \land\ \mid b_n \mid\ \leq\ \mid a_n \mid\ for\ every\ n\rightarrow \sum\limits_{n=1}^{\infty}\mid b_n\mid\ is\ convergent (4)

The Attempt at a Solution


I suspect that the given series is divergent, thus the series would not be convergent. Thus I take the contrapositive of statement 4 which comes out to be \sum\limits_{n=1}^{\infty}\mid b_n\mid\ is\ divergent\ \land\ \mid b_n \mid\ \leq\ \mid a_n \mid\ for\ every\ n\rightarrow \sum\limits_{n=1}^{\infty}\mid a_n\mid\ is\ divergent.
Let a_n=\frac{n-1}{(n+2)(n+3)} and b_n = \frac{1}{n}. The statement \mid b_n \mid\ \leq\ \mid a_n is never true in the domain [1,\infty), so we cannot say that a_n is divergent. Any suggestions?

The terms of your sum are all positive, so it is enough to give a lower bound series that diverges.

For ##n > 6## we have ##n-1 > \frac{1}{2}(n+3)## and ##(n+2)(n+3) < (n+3)^2##, so
\sum_{n=6}^{\infty} \frac{n-1}{(n+2)(n+3)} &gt; \sum_{n=6}^{\infty} \frac{1}{2} \frac{n+3}{(n+3)^2}<br /> = \frac{1}{2} \sum_{k=9}^{\infty} \frac{1}{k}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top