Design a Propeller for Physics Project

  • Thread starter Thread starter physics999help
  • Start date Start date
  • Tags Tags
    Design Propeller
AI Thread Summary
For a physics project involving a car made from everyday materials, a propeller design is needed that can be created from a manila folder, with a maximum diameter of 3 inches. The design should focus on effective aerodynamics and ease of construction using simple cutting and bending techniques. Participants in the discussion are encouraged to provide specific dimensions and design ideas that optimize performance. The goal is to create a functional propeller that enhances the car's movement. Clear and practical suggestions will aid in successfully completing the project.
physics999help
Messages
3
Reaction score
0
I have a physics project where I am supposed to make a car from index cards, manilla folders, paper clips, drinking straws, glue, tape, rubber bands, etc. I am attaching a propeller to the back, but I need a decent design i can make by cutting and bending a manilla folder. It should not be more than 3 inches across. Pretty, much, i need someone to give me dimensions for a workable propeller.
 
Physics news on Phys.org
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top