Prove Symmetry Group of Regular Polygon Has 1 & 2 Dim Irreducible Reps

wdlang
Messages
306
Reaction score
0
how to prove that the symmetry group of a regular polygon has only 1 and 2 dim irreducible representations?
 
Physics news on Phys.org


The group in question, i.e. the dihedral group, has an abelian subgroup of index 2 (the one generated by the reflection). Thus any irreducible representation is at most 2 dimensional. I'll let you fill in the details. Post back if you need more help!
 
Last edited:


morphism said:
The group in question, i.e. the dihedral group, has an abelian subgroup of index 2 (the one generated by the reflection). Thus any irreducible representation is at most 2 dimensional. I'll let you fill in the details. Post back if you need more help!

Thanks a lot

maybe you mean the rotation subgroup is of index 2?

i will think of it.
 


wdlang said:
maybe you mean the rotation subgroup is of index 2?
Yup - sorry! (The reflection subgroup has order 2!)
 


morphism said:
The group in question, i.e. the dihedral group, has an abelian subgroup of index 2 (the one generated by the reflection). Thus any irreducible representation is at most 2 dimensional. I'll let you fill in the details. Post back if you need more help!

but i still can not figure out the proof

any hint?

is there any theorem?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top