Proving Equations through Homework

  • Thread starter Thread starter prace
  • Start date Start date
  • Tags Tags
    Homework
prace
Messages
99
Reaction score
0

Homework Statement


The question asked was to "Show that..." with regards to the equations stated below.


Homework Equations



http://album6.snapandshare.com/3936/45466/862870.jpg

sorry for such a large image... I am not too savvy with the latex yet, so i just linked an image that i created with microsoft word.

The Attempt at a Solution



So, I know I am suppossed to show an attempt at this solution, but I am completely boggled on where to even start. One thing I did try to do for the first equation was to just substitute in values for n starting at 2. This did not really do much for me because as I continued along, the equation just came out to be ln(1-(some number smaller and smaller than 1)).

The only thing I can take out of the second equation is that the series will converge at pi, but I don't see how that is going to help me. I also tried substitute in numbers for n but again, no help there. I did find out however that the series was an alternating series, but I guess that was pretty obvious from the original statement of the problem.

Any help with getting me started with this would be greatly appreciated!
 
Last edited by a moderator:
Physics news on Phys.org
Hint \sum_k \ln a_k = \ln\prod_k a_k
 
The first series should probably start at 2, but it can not start at 1 because it it does than it is undefined.
 
benorin said:
Hint \sum_k \ln a_k = \ln\prod_k a_k

Hi,

Thanks for the responses. Sorry for the dumb question, but what does the symbol in the right hand side of the equation after the ln mean? I don't think I have seen that one before. :confused: thanks.
 
prace said:
Hi,

Thanks for the responses. Sorry for the dumb question, but what does the symbol in the right hand side of the equation after the ln mean? I don't think I have seen that one before. :confused: thanks.


It's an infinite product.
 
cool thanks, I am going to try and figure it out! I'll be back =)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top