_wolfgang_
- 23
- 0
Homework Statement
Prove that \int\sqrt{}9-x^2 dx
=\frac{9\Theta}{2}+\frac{9sin2\Theta}{4}+c
given that x=3sin\Theta
Homework Equations
The Attempt at a Solution
\int\sqrt{}9-x^2 dx
=\frac{(9-x^2)^{1.5}}{10x}
=\frac{(-x^2)(\sqrt{-x^2+9}+9\sqrt{(-x^2)+9}}{10x}
=\frac{-x(x^2\sqrt{(-x^2)+9}-9(\sqrt{(-x^2)+9}}{10}
=\frac{-3sin\Theta(9(sin^2)\Theta\sqrt{9(sin^2)\Theta-9}-9\sqrt{9(sin^2)+9}}{10}
Im not to sure if I am going in the right direction if i am not guidance would be appreciated