1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

QED : Momentum of the photon-field

  1. May 16, 2005 #1
    Greetings,

    I have to show that

    [tex]\vec{P}=\frac{1}{c^2} \int d^3 x N \left(\dot{A}^{\mu} \nabla A_{\mu}\right)[/tex]

    is equivalent to

    [tex]\vec{P}= \sum_{\vec{k}} \hbar \vec{k} N(\vec{k}) [/tex]

    N in the first expression denotes the normal product, and [tex]N(\vec{k})[/tex] is the usual number operator.

    Now taking the normal ordering one gets
    [tex] \vec{P}=\frac{1}{c^2} \int d^3 x \left\{\dot{A}^{\mu,+} \nabla A_{\mu}^{+} + \nabla A_{\mu}^{-} \dot{A}^{\mu,+} + \dot{A}^{\mu,-} \nabla A_{\mu}^{+} + \dot{A}^{\mu,-} \nabla A_{\mu}^{-}\right\} [/tex]

    The middle terms give the sougth expression, the exponentials in the expansion of the [tex]A_{\mu}[/tex] nicely cancelling. The first and the last term however is giving me trouble. I basically end up with an unwanted term of the form

    [tex]\sum_{\vec{k},r} \frac{\hbar \vec{k}}{2} \int \frac{d^3x}{V} \left\{\epsilon^{\mu}_{r} (\vec{k}) \epsilon_{\mu,r} (\vec{k}) \left(a(\vec{k}) a(\vec{k})e^{-2ik.x} + a^{+} (\vec{k}) a^{+} (\vec{k}) e^{2ik.x}\right)\right\}[/tex]

    How to get rid of it?
     
    Last edited: May 16, 2005
  2. jcsd
  3. May 16, 2005 #2

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    I don't like that box normalization.Here's how i do it.

    [tex] P_{\mu}=\int d^{3}x \ \left(-F^{0\rho}\partial_{\mu}A_{\rho}-\delta_{\mu}^{0}\mathcal{L}_{0}\right) [/tex] (1)

    [tex] P_{j}=\int d^{3}x \ \left(-F^{0\rho}\partial_{j}A_{\rho}\right)

    =\int d^{3}x \ \left(-F^{0k}\partial_{j}A_{k}\right) [/tex] (2)

    [tex] A^{\mu}=\int \frac{d^{3}p}{(2\pi)^{3}2p_{0}(\vec{p})}\left[ a^{\mu}(p)e^{-ipx}+a^{*\mu}(p)e^{ipx}\right] [/tex] (3)

    [tex] \partial_{j}A_{k}(x) =\int \frac{d^{3}p}{(2\pi)^{3}2p_{0}(\vec{p})} \left(-ip_{j}\right) \left[a_{k}(p) e^{-ipx}-a_{k}^{*}(p) e^{ipx} \right] [/tex] (4)

    [tex] F^{0k}(x)=\int \frac{d^{3}q}{(2\pi)^{3}2q_{0}(\vec{q})}\left(-i\right) \left\{\left[q_{0}(\vec{q})a^{k}(q)-q^{k}a^{0}(q)\right]e^{-iqx}-\left[q_{0}(\vec{q})a^{k}(q)-q^{k}a^{0}(q)\right]^{*}e^{iqx}\right\} [/tex] (5)

    Therefore

    [tex] P_{j}=\int \frac{d^{3}x \ d^{3}p \ d^{3}q}{(2\pi)^{6}2p_{0}(\vec{p}) \ 2q_{0}(\vec{q})} p_{j}\left[ a_{k}(p)e^{-ipx}-a^{*}_{k}(p)e^{ipx}\right] [/tex]
    [tex] \times \left\{\left[q_{0}(\vec{q})a^{k}(q)-q^{k}a^{0}(q)\right]e^{-iqx}-\left[q_{0}(\vec{q})a^{k}(q)-q^{k}a^{0}(q)\right]^{*}e^{iqx}\right\} [/tex] (6)

    Can u do all calculations...?U'll have to break into 4 parts.2 of them give the desired result,while 2 cancel,as they are integrations of odd functions on even domains wrt the origin.

    Daniel.
     
    Last edited: May 16, 2005
  4. May 16, 2005 #3

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    And of course,"p" is shorthand from the four-vector:

    [tex] p^{\mu}=\left(p_{0}(\vec{p}),\vec{p}\right) \ ;p_{0}\left(\vec{p}\right)=\left|\vec{p}\right| [/tex]

    Daniel.
     
  5. May 16, 2005 #4

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    Here's another way of looking at it (other lecture notes,other conventions,blah,blah,blah).

    [tex] A_{\mu}(x)=\frac{1}{(2\pi)^{3/2}}\int \frac{d^{3}k}{\sqrt{2k_{0}}} \sum_{\lambda=0}^{3} \epsilon_{\mu}^{\lambda} \left[a_{\lambda}(k)e^{-ikx}+a_{\lambda}^{*}(k) e^{ikx}\right] [/tex] (1)

    Imposing the Lorenz-Lorentz gauge

    [tex] a_{3}(k)=a_{0}(k) [/tex] (2)

    The calculation is done for the hamiltonian and the momentum is found by covariance.

    [tex] H=-\frac{1}{2}\int d^{3}x \left[(\partial_{0}A_{\mu})(\partial_{0}A^{\mu})+(\nabla A_{\mu})\cdot(\nabla A^{\mu})\right] [/tex]

    [tex]=\frac{1}{2(2\pi)^{3}}\int \frac{d^{3}x \ d^{3}k \ d^{3}q}{\sqrt{2k_{0}q_{0}}} \sum_{\lambda,\lambda'=0}^{3} \left[\epsilon^{\lambda}(k)\epsilon^{\lambda'}(q)\right] \left [\left(k_{0}q_{0}+\vec{k}\cdot\vec{q}\right)a_{\lambda}(k)a_{\lambda'}(q) e^{-i(k+q)x} [/tex]

    [tex]\left -\left(k_{0}q_{0}+\vec{k}\cdot\vec{q}\right)a_{\lambda}(k)a_{\lambda'}^{*}(q) e^{-i(k-q)x}-\left(k_{0}q_{0}+\vec{k}\cdot\vec{q}\right)a_{\lambda}^{*}(k)a_{\lambda'}(q) e^{i(k-q)x}+\left(k_{0}q_{0}+\vec{k}\cdot\vec{q}\right)a_{\lambda}(k)a_{\lambda'}^{*}(q) e^{-i(k+q)x} \right] [/tex]

    [tex] =\frac{1}{2}\int d^{3}k \frac{1}{2k_{0}}\sum_{\lambda,\lambda'=0}^{3} \left[\epsilon^{\lambda}(k)\cdot\epsilon^{\lambda'}(k)\right] \left[-2k_{0}^{2}a_{\lambda}(k)a_{\lambda'}^{*}(k)-2k_{0}^{2}a_{\lambda}^{*}(k)a_{\lambda'}(k)\right] [/tex]

    [tex]=-\frac{1}{2}\int d^{3}k \ k_{0}\sum_{\lambda,\lambda'} g^{\lambda\lambda'} \left[a_{\lambda}(k)a_{\lambda'}^{*}(k)+a_{\lambda}^{*}(k)a_{\lambda'}(k) \right] [/tex]

    [tex]=-\int d^{3}k \ k_{0} \sum_{\lambda,\lambda'} g^{\lambda\lambda'}a^{*}_{\lambda}(k)a_{\lambda'}(k) [/tex]

    [tex]=-\int d^{3}k \ k_{0}\left[a_{0}^{*}(k)a_{0}(k)-a_{1}^{*}(k)a_{1}(k)-a_{2}^{*}(k)a_{2}(k)-a_{3}^{*}(k)a_{3}(k) \right] [/tex] (3)

    To be continued.

    Daniel.
     
  6. May 16, 2005 #5

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    Using (3) & (2),one gets the desired result

    [tex] H=\int d^{3}k \ k_{0} \left[a_{1}^{*}(k)a_{1}(k)+a_{2}^{*}(k)a_{2}(k)\right] [/tex] (4)

    Now,through Lorentz covariance,u find easily

    [tex] \vec{P}=\int d^{3}k \ \vec{k} \left[a_{1}^{*}(k)a_{1}(k)+a_{2}^{*}(k)a_{2}(k)\right] [/tex] (5)

    So this is the classical theory.(5) is the momentum of the field.

    Now realize the canonical quantization.The complex amplitudes thus far become operators of annihilation and creation.To avoid an infinit vacuum energy & momentum of the quantum field,one introduces the normal ordering product.

    The "sought expression" is

    [tex] :\hat{\vec{P}}: \ =\int d^{3}k \ \vec{k}\left[\hat{a}_{1}^{\dagger}(k)\hat{a}_{1}(k)+\hat{a}_{2}^{\dagger}(k)\hat{a}_{2}(k)\right] [/tex] (6)

    Define the Number operator and reconsider hbar and you've got it.

    Daniel.
     
    Last edited: May 16, 2005
  7. May 17, 2005 #6
    Hmm, I like the second approach. Its alot more insightful than the I'm working, but then again I'm stuck using the Mandl & Shaw conventions. Putting stuff in a box and then imposing boundary conditions has always struck me as weird...
     
  8. May 17, 2005 #7

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    It doesn't look too logical to me.Sides,there are better books than Mandl & Shaw.I've been taught after Bailin & Love.

    Daniel.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: QED : Momentum of the photon-field
  1. Momentum of a photon (Replies: 3)

  2. Photon momentum (Replies: 4)

  3. Momentum of photon (Replies: 3)

  4. Momentum of a photon (Replies: 9)

Loading...