fluidistic
Gold Member
- 3,928
- 272
Homework Statement
Hi guys, I'm stuck at some step in a QM exercise. Here it is: Consider a free particle of mass m that moves along the x-axis (1 dimensional). Show that ##\frac{dA}{dt}=\frac{2 \hbar ^2}{m^2}\int \frac{\partial \psi}{\partial x} \frac{\partial \psi ^*}{\partial x}dx=\text{constant}##.
Where ##A(t)=\frac{i\hbar}{m} \int x \left ( \psi \frac{\partial \psi ^*}{\partial x} - \psi ^* \frac{\partial \psi}{\partial x} \right ) dx##.
In fact ##A(t)=\frac{d \langle x^2 \rangle}{dt}## but I already showed that it's worth the integral I just wrote (the result matches the answer).
Homework Equations
(1)Schrödinger's equation: ##i\hbar \frac{\partial \psi}{\partial t}=\frac{(p^2 \psi)}{2m}##, where p is the momentum operator and worth ##-ih \frac{\partial \psi}{\partial x }##.
Taking the complex conjugate on both sides, I get that ##\psi ^*## satisfies:
(2) ##-i \hbar \frac{\partial \psi ^*}{\partial t}=\frac{p^2 \psi ^*}{2m}##
From (1) I get that
(3) ##\frac{\partial \psi}{\partial t }=-\frac{i(p^2\psi)}{2m\hbar}##
and
(4)##\frac{\partial \psi ^*}{\partial t }=\frac{i(p^2\psi ^*)}{2m\hbar}##
The Attempt at a Solution
##\frac{dA(t)}{dt}= \frac{d}{dt} \left [ \frac{i\hbar}{m} \int x \left ( \psi \frac{\partial \psi ^*}{\partial x} - \psi ^* \frac{\partial \psi }{\partial x} \right ) dx \right ]= \frac{ih}{m} \int x \underbrace{ \frac{d}{dt} \left ( \psi \frac{\partial \psi ^*}{\partial x} - \psi ^* \frac{\partial \psi }{\partial x} \right ) dx } _{K}## (line 5)
I try to calculate K first.
##K=\frac{\partial \psi}{\partial t} \frac{\partial \psi ^*}{\partial x}+\psi \frac{\partial ^2 \psi ^*}{\partial x^2}- \left ( \frac{\partial \psi^*}{\partial t} \frac{\partial \psi }{\partial x} + \psi ^* \frac{\partial ^2 \psi }{\partial x ^2}\right )##. (line 6)
Now I use (3) and (4) to get ##K=-\frac{i}{\hbar} \frac{(p^2\psi)}{2m} \frac{\partial \psi ^*}{\partial x}+\psi \frac{\partial ^2 \psi ^*}{\partial t \partial x }- \left ( \frac{i}{\hbar} \frac{(p^2 \psi ^* )}{2m} \frac{\partial \psi }{\partial x }+ \psi ^* \frac{\partial ^2 \psi}{ \partial t \partial x } \right )## (line 7)
Here I assume that ##\frac{\partial ^2 \psi }{\partial t \partial x }=\frac{\partial ^2 \psi}{\partial x \partial t}##.
If so, I get ##K=-\frac{i}{\hbar} \frac{(p^2 \psi)}{2m} \frac{\partial \psi ^*}{\partial x}+\psi \frac{\partial ^2 \psi ^*}{\partial x \partial t}- \left ( \frac{i}{\hbar} \frac{(p^2 \psi ^*)}{2m} \frac{\partial \psi}{\partial x} + \psi ^* \frac{\partial ^2 \psi }{\partial x \partial t} \right )## (line 8)
Now I use (3) and (4) to get ##K=-\frac{i}{\hbar} \frac{(p^2 \psi)}{2m} \frac{\partial \psi ^*}{\partial x} + \psi \frac{\partial}{\partial x} \left [ \frac{i(p^2 \psi ^*)}{2m \hbar} \right ] - \{ \frac{i}{\hbar} \frac{(p^2 \psi ^*)}{2m\hbar} \frac{\partial \psi}{\partial x} + \psi ^* \frac{\partial }{\partial x } \left [ -\frac{i (p^2 \psi)}{2m\hbar} \right ] \} ## (line 9)
I factor out i/(2m hbar) to get ##K=\frac{i}{2m\hbar} \{ \psi \frac{\partial }{\partial x} (p^2 \psi ^*) - \frac{\partial \psi ^*}{\partial x} (p^2 \psi ) - \frac{\partial \psi }{\partial x} (p^2 \psi ^*) -\psi ^* \frac{\partial }{\partial x} (p^2 \psi) \} ## (line 10)
Now I replace ##p^2## by ##-\hbar ^2 \frac{\partial ^2 }{\partial x^2}## to get ##K=-\frac{i\hbar}{2m} \left ( \psi \frac{\partial ^3 \psi ^*}{\partial x^3} - \frac{\partial \psi ^*}{\partial x} \frac{\partial ^2 \psi }{\partial x^2} - \frac{\partial \psi}{\partial x} \frac{\partial ^2 \psi ^*}{\partial x^2} - \psi ^* \frac{\partial ^3 \psi}{\partial x^3} \right ) ## (line 11)
Now I replace the value of K into where I took it (that is, line 11 into line 5), to get ##\frac{dA(t)}{dt} = \frac{\hbar^2}{2m^2} \int x \left ( \psi \frac{\partial ^3 \psi ^*}{\partial x^3} - \frac{\partial \psi ^*}{\partial x} \frac{\partial ^2 \psi }{\partial x^2} - \frac{\partial \psi}{\partial x} \frac{\partial ^2 \psi ^*}{\partial x^2} - \psi ^* \frac{\partial ^3 \psi}{\partial x^3} \right ) dx##. (line 12).
This is where I'm stuck. I thought about integration by parts, but I'm not seeing anything nice.
I've rewritten ##\frac{dA(t)}{dt}## as ##\frac{\hbar^2}{2m^2} \int x \left [ \frac{\partial }{\partial x} \left ( \psi \frac{\partial ^2 \psi ^* }{\partial x^2} \right ) -2 \frac{\partial \psi}{\partial x} \frac{\partial ^2 \psi ^*}{\partial x^2 } - \frac{\partial }{\partial x} \left ( \psi ^* \frac{\partial ^2 \psi}{\partial x^2} \right ) \right ] dx##. I'm still totally stuck.
I've been extremely careful and what I wrote in latex contains no typo error. All is exactly as in my draft so any mistake/error you see, it's not a typo but an algebra one that I made.
Any help is greatly appreciated, I really want to solve that exercise. Thanks :)