Question: # of particles within an energy range below Fermi Energy.

Lil Dansn Man
Messages
2
Reaction score
0

Homework Statement


Here's what the question says.

"Consider a cube of gold 1 mm on an edge. calculate the approximate number of conduction electrons in this cube whose energies lie in the range from 4.000 to 4.025 at 300k. Assume Ef(300K) = Ef(0)."



Homework Equations



Well, I know that n(E)dE = g(E)Ffd(E)dE, where g(E) is the density of states, and Ffd is the Fermi-Dirac probability.

Also, N/V = 0-inf∫ n(E)dE

and the Fermi Energy for gold is 5.53 ev


The Attempt at a Solution



Finding the Volume is easy, which is just V = (1e-3)^3

Then, I try to find g(E), which is g(E)dE = DE^(1/2)dE, where D =\frac{8*sqrt(2)*pi*Me^(3/2)}{h^3}

Using 4.00eV for E^(1/2) (and consequently converting it to Joules) I get g(E) = 6.79^37 Energy States/m^3.

Here's what I did in wolfram alpha language:

here's D: http://www.wolframalpha.com/input/?i=(8*sqrt(2)*pi*(9.109e-31)^(3/2))/(6.626e-34)^3)

Now here's D*E^(1/2): http://www.wolframalpha.com/input/?i=1.06e56*(4*1.602e-19)




Pretty much my question is "What do I do next?" Due to N/V equaling an integral, I'm a little iffy on what to do.

Thanks :)
 
Physics news on Phys.org
Hmm sorry, I actually only multiplied by E, not E^1/2...


Here's E^1/2: 1.06e56*((4*1.602e-19)^(1/2))
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top