merrypark3
- 29
- 0
Goldstein(3rd) 1.15
Generalized potential, U as follows.
U( \stackrel{\rightarrow}{r} ,\stackrel{\rightarrow}{v})=V(r)+\sigma\cdot L
L is angular momentum and \sigma is a fixed vector.
(b) show thate the component of the forces in the two coordinate systems(cartesin, spherical polar) are related to each other as
Q_{j}=F_{i}\cdot \frac{\partial r_{i}} {\partial q_{j}} \cdots (a)
So I did,
Q_{j}= - \frac{\partial U}{\partial q_{j}} + \frac{d}{dt} (\frac{\partial U}{\partial \dot q_{j}})
<br /> =- \frac{\partial x_{k}}{\partial q_{j}} \frac{\partial U}{\partial x_{k}} + \frac{d}{dt}(\frac{\partial \dot x_{k}}{\partial \dot q_{j}} \frac{\partial U}{\partial \dot x_{k}})<br />
<br /> =- \frac{\partial x_{k}}{\partial q_{j}} \frac{\partial U}{\partial x_{k}} + \frac{d}{dt}(\frac{\partial x_{k}}{\partial q_{j}} \frac{\partial U}{\partial \dot x_{k}})<br />
<br /> =- \frac{\partial x_{k}}{\partial q_{j}} \frac{\partial U}{\partial x_{k}} + \frac{d}{dt}(\frac{\partial x_{k}}{\partial q_{j}}) \frac{\partial U}{\partial \dot x_{k}}+ \frac{\partial x_{k}}{\partial q_{j}} \frac{d}{dt}(\frac{\partial U}{\partial \dot x_{k}})<br />
=\frac{\partial x_{k}}{\partial q_{j}}(<br /> - \frac{\partial U}{\partial x_{k}} + \frac{d}{dt} (\frac{\partial U}{\partial \dot x_{k}}))+ \frac{d}{dt}(\frac{\partial x_{k}}{\partial q_{j}}) \frac{\partial U}{\partial \dot x_{k}}<br />
=\frac{\partial x_{k}}{\partial q_{j}} (<br /> F_{k})+ \frac{d}{dt}(\frac{\partial x_{k}}{\partial q_{j}}) \frac{\partial U}{\partial \dot x_{k}}<br />
If the last term in the last line vanishes, Q_{j} and F_{k} satisfies the relation (a), but it DOESN't vanish. What's my problem??
I've evaluated the last term in this condition, but It doesn't...
Generalized potential, U as follows.
U( \stackrel{\rightarrow}{r} ,\stackrel{\rightarrow}{v})=V(r)+\sigma\cdot L
L is angular momentum and \sigma is a fixed vector.
(b) show thate the component of the forces in the two coordinate systems(cartesin, spherical polar) are related to each other as
Q_{j}=F_{i}\cdot \frac{\partial r_{i}} {\partial q_{j}} \cdots (a)
So I did,
Q_{j}= - \frac{\partial U}{\partial q_{j}} + \frac{d}{dt} (\frac{\partial U}{\partial \dot q_{j}})
<br /> =- \frac{\partial x_{k}}{\partial q_{j}} \frac{\partial U}{\partial x_{k}} + \frac{d}{dt}(\frac{\partial \dot x_{k}}{\partial \dot q_{j}} \frac{\partial U}{\partial \dot x_{k}})<br />
<br /> =- \frac{\partial x_{k}}{\partial q_{j}} \frac{\partial U}{\partial x_{k}} + \frac{d}{dt}(\frac{\partial x_{k}}{\partial q_{j}} \frac{\partial U}{\partial \dot x_{k}})<br />
<br /> =- \frac{\partial x_{k}}{\partial q_{j}} \frac{\partial U}{\partial x_{k}} + \frac{d}{dt}(\frac{\partial x_{k}}{\partial q_{j}}) \frac{\partial U}{\partial \dot x_{k}}+ \frac{\partial x_{k}}{\partial q_{j}} \frac{d}{dt}(\frac{\partial U}{\partial \dot x_{k}})<br />
=\frac{\partial x_{k}}{\partial q_{j}}(<br /> - \frac{\partial U}{\partial x_{k}} + \frac{d}{dt} (\frac{\partial U}{\partial \dot x_{k}}))+ \frac{d}{dt}(\frac{\partial x_{k}}{\partial q_{j}}) \frac{\partial U}{\partial \dot x_{k}}<br />
=\frac{\partial x_{k}}{\partial q_{j}} (<br /> F_{k})+ \frac{d}{dt}(\frac{\partial x_{k}}{\partial q_{j}}) \frac{\partial U}{\partial \dot x_{k}}<br />
If the last term in the last line vanishes, Q_{j} and F_{k} satisfies the relation (a), but it DOESN't vanish. What's my problem??
I've evaluated the last term in this condition, but It doesn't...
Last edited: