LagrangeEuler
- 711
- 22
Relations between vectors in cylindrical and
Cartesian
coordinate systems are given by
\vec{e}_{\rho}=\cos \varphi \vec{e}_x+\sin \varphi \vec{e}_y
\vec{e}_{\varphi}=-\sin \varphi \vec{e}_x+\cos \varphi \vec{e}_y
\vec{e}_z=\vec{e}_z
We can write this in form
<br /> \begin{bmatrix}<br /> \vec{e}_{\rho} \\[0.3em]<br /> \vec{e}_{\varphi} \\[0.3em]<br /> \vec{e}_z \\[0.3em]<br /> <br /> <br /> \end{bmatrix}<br /> =\begin{bmatrix}<br /> \cos \varphi & \sin \varphi & 0 \\[0.3em]<br /> -\sin \varphi & \cos \varphi & 0 \\[0.3em]<br /> 0 & 0 & 1 \\[0.3em]<br /> <br /> <br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> \vec{e}_x \\[0.3em]<br /> \vec{e}_y \\[0.3em]<br /> \vec{e}_z \\[0.3em]<br /> <br /> <br /> \end{bmatrix}<br />
where matrix ##
\begin{bmatrix}
\cos \varphi & \sin \varphi & 0 \\[0.3em]
-\sin \varphi & \cos \varphi & 0 \\[0.3em]
0 & 0 & 1 \\[0.3em]
\end{bmatrix}## is orthogonal. Then means that norms of the vectors ##
\begin{bmatrix}
\vec{e}_x \\[0.3em]
\vec{e}_y \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}## and
##
\begin{bmatrix}
\vec{e}_{\rho} \\[0.3em]
\vec{e}_{\varphi} \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}## are the same. But how to define norm of vector
##\begin{bmatrix}
\vec{e}_{\rho} \\[0.3em]
\vec{e}_{\varphi} \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}##?
Cartesian
coordinate systems are given by
\vec{e}_{\rho}=\cos \varphi \vec{e}_x+\sin \varphi \vec{e}_y
\vec{e}_{\varphi}=-\sin \varphi \vec{e}_x+\cos \varphi \vec{e}_y
\vec{e}_z=\vec{e}_z
We can write this in form
<br /> \begin{bmatrix}<br /> \vec{e}_{\rho} \\[0.3em]<br /> \vec{e}_{\varphi} \\[0.3em]<br /> \vec{e}_z \\[0.3em]<br /> <br /> <br /> \end{bmatrix}<br /> =\begin{bmatrix}<br /> \cos \varphi & \sin \varphi & 0 \\[0.3em]<br /> -\sin \varphi & \cos \varphi & 0 \\[0.3em]<br /> 0 & 0 & 1 \\[0.3em]<br /> <br /> <br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> \vec{e}_x \\[0.3em]<br /> \vec{e}_y \\[0.3em]<br /> \vec{e}_z \\[0.3em]<br /> <br /> <br /> \end{bmatrix}<br />
where matrix ##
\begin{bmatrix}
\cos \varphi & \sin \varphi & 0 \\[0.3em]
-\sin \varphi & \cos \varphi & 0 \\[0.3em]
0 & 0 & 1 \\[0.3em]
\end{bmatrix}## is orthogonal. Then means that norms of the vectors ##
\begin{bmatrix}
\vec{e}_x \\[0.3em]
\vec{e}_y \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}## and
##
\begin{bmatrix}
\vec{e}_{\rho} \\[0.3em]
\vec{e}_{\varphi} \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}## are the same. But how to define norm of vector
##\begin{bmatrix}
\vec{e}_{\rho} \\[0.3em]
\vec{e}_{\varphi} \\[0.3em]
\vec{e}_z \\[0.3em]
\end{bmatrix}##?