Relativity: Breakdown in Simultaneity Question

AI Thread Summary
The discussion centers on a thought experiment involving a pole vaulter moving at 0.866c relative to a farmer and a barn. The farmer believes he can close both barn doors simultaneously with the vaulter inside, while the vaulter disagrees due to relativistic effects. Calculations reveal that the vaulter perceives the barn as 5 meters long and the pole as 16 meters long, leading to a breakdown in simultaneity between the two reference frames. The farmer's events appear simultaneous in his frame, but the vaulter's calculations show a time difference, confirming the lack of simultaneity. Ultimately, the analysis demonstrates that relativistic effects create a paradox regarding the simultaneous closing of the doors.
egel
Messages
2
Reaction score
0
1. Homework Statement :

We have a pole vaulter, and farmer, and a barn. The vaulter is traveling at 0.866c (as measured by the farmer), and carrying a pole that, in his reference frame, is 10 meters long. The barn has an open door at either side, and is 10 meters wide, in the farmer's reference frame. The farmer believes he can shut both doors simultaneously for an instant in time, with the vaulter inside, then open them again, without breaking the vaulter's pole. The vaulter believes that farmer cannot do this. Prove, that when properly analysed, the farmer and the vaulter agree on the outcome, and include both quantitative calculations and a written explanation. We are told to assume the walls (and doors) are paper thick, that the pole would break without slowing down, and that it is possible for the farmer to shut both doors simultaneously (in his reference frame) for the purposes of this question.

2. Homework Equations :

Obviously the one for length contraction:
L = Lp/\gamma
where Lp is the proper length and gamma is:
\gamma = 1/\sqrt{1-(v^2/c^2)}
And then, part of why I am struggling with this: one to prove a breakdown in simultaneity.
Possibly also time dilation: \Deltat = \gamma\Deltat'

The Attempt at a Solution



So far, I have, using the length contraction formula above, shown that the vaulter will measure the barn as length contracted to 5.000m(3d.p) and the farmer will measure the pole to be length contracted to 8.000m(3d.p).

Thus the farmer can shut the vaulter in the barn for an instant in time, but in the vaulter's reference frame the two events (the first and second doors opening) will not be simultaneous.

However, I need to mathematically prove the breakdown in simultaneity (the explanation is fine AFAIK, in terms of special relativity theory), and I don't know how to do this. Also, does time dilation affect the result? Obviously it takes place, but does it actually affect the result here?
 
Last edited:
Physics news on Phys.org
You won't be able to solve this by just using the dilation formulas. Simultaneity (or the lack of it) needs to be established by comparing the coordinates of specific events in each system. The point of the problem is to show that just using the formulas appears to lead to a paradox.

Consider the following two events:

A -- the farmer closes the lead door at position x = 10 m, t = 0 (the value for t doesn't really matter)

B -- the farmer closes the trailing door at position x = 0 m, t = 0 (all that matters is that the time of event B is the same as for event A, in the farmer's reference frame).

The vaulter's speed is v/c = 0.866 (along the x-axis), giving you a gamma of 2. Use the equations for transformation of coordinates to find the values of (x', t') for events A and B in the vaulter's reference frame. You should find that the distance separating the two events matches the result from the length contraction formula. You will now find, however, that the values of t' for the two events are not the same. That result is what establishes the lack of simultaneity in the vaulter's frame of reference.

So far, I have, using the length contraction formula above, shown that the vaulter will measure the barn as length contracted to 5.000m(3d.p) and the farmer will measure the pole to be length contracted to 8.000m(3d.p)

BTW, there is a problem with this statement. Since the barn and the pole have the same rest lengths and each is seen as moving at the same speed in the other reference frame, the farmer should see the pole contracted to 5 meters and the vaulter should see the barn contracted to 5 meters.
 
Last edited:
dynamicsolo said:
You won't be able to solve this by just using the dilation formulas. Simultaneity (or the lack of it) needs to be established by comparing the coordinates of specific events in each system. The point of the problem is to show that just using the formulas appears to lead to a paradox.

Consider the following two events:

A -- the farmer closes the lead door at position x = 10 m, t = 0 (the value for t doesn't really matter)

B -- the farmer closes the trailing door at position x = 0 m, t = 0 (all that matters is that the time of event B is the same as for event A, in the farmer's reference frame).

The vaulter's speed is v/c = 0.866 (along the x-axis), giving you a gamma of 2. Use the equations for transformation of coordinates to find the values of (x', t') for events A and B in the vaulter's reference frame. You should find that the distance separating the two events matches the result from the length contraction formula. You will now find, however, that the values of t' for the two events are not the same. That result is what establishes the lack of simultaneity in the vaulter's frame of reference.
Ah, I see what you're saying. I think I can take it from here.Thank you very much for your assistance.

dynamicsolo said:
BTW, there is a problem with this statement. Since the barn and the pole have the same rest lengths and each is seen as moving at the same speed in the other reference frame, the farmer should see the pole contracted to 5 meters and the vaulter should see the barn contracted to 5 meters.
That would be because there is a typo in my original post. Very sorry about that. The pole, in the vaulter's frame, is 16m long, not10m. Which is why the calculation for length contraction works out at 8.0m, not 5.0m

P.S this works out with the second door closing then opening again at (quite) approx. t'=-5... while the first is at t'=0, and both of them occur simultaneously at t=0, which proves the breakdown of simultaneity, and then also that at t'=~~-5, the the distance to the second door in the vaulters frame is around 19m, which is more than enough to avoid chopping off his pole. The first door still closes and opens just as the rear of the pole has passed under it. :) (I've only given rough values because I don't have my calculations sitting in front of me right this instant.)
 
Last edited:
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top