Resistivity of Nichrome experiment

AI Thread Summary
The experiment aimed to determine the resistivity of Nichrome wire consistently yielded a value of 5 x 10^-7 Ωm, which is lower than the expected 1 x 10^-6 Ωm. The setup involved a Wheatstone bridge and Fluke 75 multimeters to measure voltage and current across a 1 m Nichrome wire. After thorough checks on the wire's diameter and resistance, it was discovered that the wire was actually Manganin, not Nichrome, which has a similar resistivity. This realization was confirmed by measuring resistance directly and comparing it to known values for Manganin. The discrepancy was resolved, highlighting the importance of verifying material composition in experiments.
ABarrows
Messages
3
Reaction score
0
Every year we do an experiment to find the resistivity of Nichrome wire, and every year the result is the same: 5 x 10^-7 instead of 1 x 10^-6. For the life of me I haven't been able to track down why it's a factor of 2 off.

We use a Wheatstone bridge that has a 1 m length Nichrome wire stretched over a meter stick. A Heathkit power supply (either model SP-2710, IP-2711, or SP-2720) feeds the current through a Fluke 75 multimeter set as an ammeter; a patch cord from the meter's COM terminal is clamped via an alligator clip to a sliding contact that moves along the meter stick, and the supply's negative terminal connects to the plug-in at the zero end of the wire. A second Fluke 75 multimeter serves as a voltmeter, with its patch cords accordingly plugged into those patch cords previously mentioned.

They start at the 5 cm mark and work out to the 80 cm mark in 5 cm increments, measuring the voltages with a constant current of 0.5 A. The instructions say the wire's diameter is about 0.5 mm--I got 0.515 mm when I checked it with a micrometer, so that's not the problem. If I measure the resistance of the wire with a multimeter directly, I get about 2 ohms; this is exactly what they get in the first part of the experiment when they use a 75 cm length and measure corresponding voltages for currents from 0.05 A to 0.5 A in 0.05 A increments. I checked the patch cords and found they do not lend any appreciable resistance to the circuit (they all measured 0 ohms with the multimeter when connected together).

I'm out of ideas as to what else to check to track down the discrepancy. Any suggestions?
 
Physics news on Phys.org
using your value of 2ohms and 0.75m length and 0.5mm diameter I also get 5x10^-7 !
My textbook gives the value for nichrome of 'about' 1x10^-6 so there may be variation between samples !... grasping at straws.
Are you certain it is nichrome?
 
I considered that it just might have a low value, but everything I've been able to find says Nichrome's resistivity varies from 1.0 x 10^-6 to 1.5 X 10^-6, so I doubt there's a composition variety with 0.5 x 10^-6 as its resistivity. And no, I'm not 100% certain it's Nichrome, but I have no reason not to take the other professor's word that it is (wish he had kept the paperwork that came with the bridges when he bought them).
 
Well, we figured it out (just in case anyone is curious). Turns out it is Manganin, not Nichrome--we used an ohmmeter to measure actual resistances for various lengths, applying the R=ρL/A relationship directly without running current through it (as the students do for the experiment), and we got the same resistivity as always. A Google search then led us to Manganin as the metal with a similar resistivity value (4.82 x 10^-7 Ωm), and Manganin's wikipedia page says Wheatstone bridges are often made with this metal. Problem finally solved. Huzzah!
 
comparing a flat solar panel of area 2π r² and a hemisphere of the same area, the hemispherical solar panel would only occupy the area π r² of while the flat panel would occupy an entire 2π r² of land. wouldn't the hemispherical version have the same area of panel exposed to the sun, occupy less land space and can therefore increase the number of panels one land can have fitted? this would increase the power output proportionally as well. when I searched it up I wasn't satisfied with...

Similar threads

Replies
57
Views
11K
Replies
20
Views
6K
Replies
6
Views
4K
Replies
56
Views
5K
Back
Top