Resolving Forces and Sizing Profiles in Structural Engineering

AI Thread Summary
The discussion focuses on resolving forces and sizing profiles for a structural frame supporting a 32,000 kN pipe. The user is facing inconsistencies in force calculations across different members, particularly between members M20 and M10, and seeks methods to ensure balanced results. Suggestions include using matrix inversion for load calculations and employing space frame software for accuracy. Additionally, profile sizing should consider tension, compression, and buckling potential, with an emphasis on reducing section sizes for efficiency. The importance of understanding load transfer and the implications of plastic design in steel structures is also highlighted.
Gunter1977
Messages
6
Reaction score
4
TL;DR Summary
Frame members
I'm with a home study structural engineering as an electrical engineer. The assignment that I am trying to do is calculating a frame to support a large pipe with a weight of 32,000 kN distributed across eight legs. ( so it on a job site) I've performed a detailed analysis of the forces using free-body diagrams and resolved the components for each member, as shown in the attached PDF. However,

I have encountered challenges in achieving consistent results across all members, particularly in balancing the sum of forces and moments. For instance, while I've determined the axial force in member M20 to be 5072 kN,

I'm struggling to achieve the same consistency for member M10.

Questions:
1. Method for Resolving Forces:
How should I approach ensuring consistent results across all members? Are there specific methods or techniques I should consider to balance the forces and moments effectively?

2. Determining Profile Sizes: What factors should I consider when determining the sizes of profiles (beams)? Is it primarily based on considerations of tension, compression, or potential for buckling under load? I appreciate any insights or guidance on these issues. Thank you!

Thank you in advance,
 

Attachments

  • Like
Likes DeBangis21 and berkeman
Engineering news on Phys.org
1. Consider solving the loads as a matrix inversion, rather than sequentially, individually. Use space frame software.

2. Refine the design by changing, (preferably reducing), the sections based on tension, compression, and column stability (buckling).

What gives? Plastic design of steel structures, allows the material to bend when first installed. Do you want the pipe or the supporting frames to deform first? By designing the frames to deform, until the load is cradled in the structure, there will be significant savings in weight and cost.
 
I believe that the free body diagram is very far from reality, as the lateral forces are non-existing, unless an external horizontal force is acting on the tank.

The only external forces acting on the support are the equally divided weight, acting solely in a vertical direction.
How the different members transfer those loads to the ground is a different matter.

Therefore, the represented four blue vectors seem to be incorrect.

Tank support.jpg
 
Last edited:
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top