Resonant frequency calculation for lengths of thick wall steel pipe

AI Thread Summary
The discussion focuses on calculating the resonant frequencies of thick-walled steel pipes, particularly in relation to their dimensions and modes of vibration. It highlights that the frequencies are influenced by how the pipe is restrained and that multiple vibration modes exist, each governed by different equations. The primary interest is in the longitudinal pressure wave resonance, while also considering the radial frequencies for the strongest modes. The conversation shifts to the assumption that the resonances of the pipe and the air inside are not coupled, leading to the use of standard formulas for longitudinal resonances. Resources for further exploration of the topic, including solutions for cylindrical shells, are also shared.
john.riley2
Messages
3
Reaction score
0

Homework Statement



resonant freq. in air for arbitrary length steel pipe with radius in the 3-8 cm range and wall thickness in the o.5 to 1 cm range

Homework Equations


unable to find a relevant equation


The Attempt at a Solution


 
Physics news on Phys.org
You won't be able to find a single relevant equation, for two reasons:

1 The frequencies depend on how the pipe is restrained. That is the probably single most important thing which determines the frequences.

2 There are many different modes of vibration of the pipe, each with its own (infinite) set of vibration frequencies and each governed by different equations. For example if the pipe was not restrained at all, it could vibrate by bending (like a beam), axially (changing length), torsionally, and radially (not just panting in and out, but also the cross section changing from a circle to an ellipse, or a "wavy" shape with any number of waves round the pipe).
 
resonant frequencies of thick-walled steel pipe

I should further qualify this. Pipe would be unrestrained, and length would hopefully be large compared to diameter and wall thickness. I would be primarily interested in the longitudinal pressure wave resonance, but it would be nice to calculate the predominant radial frequencies for the two strongest modes. Thanks
John
 
Ah... I thought you were talking about resonances of the pipe, not the air inside it.

If you assume the air and pipe resonances are not coupled (that's a very reasonable assumption for a "stiff" thick walled pipe) the longtitudinal resonances are just the standard "open and closed organ pipe" formulas, and are independent of the diameter of the pipe.

Re the radial frequencies, the solutions to the wave equation are Bessel functions. If the wavenumber k = omega/c and the radius is r, the lowest frequencies are when kr = 3.832, 7.015, 10.174, ... See http://www.du.edu/~jcalvert/math/cylcoord.htm
 
Sorry...I'm finding that I am ot communicating clearly at all. I am interested in the resonance of the pipe itself, and possibly an algorithm by which I could arrange the radial frequencies to be an harmonic of the longitudinal reaonance so that the tone would not be unpleasant. Think of giant wind chimes! many thanks!
John
 
OK, now I understand the question.

Finding any formulas for thick shells will be hard. This might give you some leads for thin shells (usually defined as radius/thickness > 10, so your largest radius and smallest thickness are in that range).

"... this thesis presents exact solutions for vibration of closed and open cylindrical shells..." http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20061016.103821/index.html

I haven't read all of it (!) - and apologies if it tells you a lot more about the subject than you really want to know.
 
Last edited by a moderator:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top