RPM required to simulate Earth's gravity (Centrifugal acceleration)

AI Thread Summary
To simulate Earth's gravity on a spacecraft rotating section with a radius of 30 meters, the required RPM is calculated to be 14 RPM, contrary to an initial calculation of 5.5 RPM. The correct approach involves using the centripetal acceleration formula A = V^2/R, where the radius should be 30 meters, not the circumference. The instructor's method mistakenly used the circumference in the calculations, leading to confusion. Ultimately, the correct formula for angular speed shows that 5.5 RPM is indeed the accurate answer when using the radius properly. Understanding these calculations is crucial for accurate simulation of gravity in space travel.
jwlgrant
Messages
1
Reaction score
0

Homework Statement



Here's the problem: "On a journey to Mars, one design is to have a section of the spacecraft rotate to simulate gravity. If the radius of this section is 30 meters, how many RPMs must it rotate to simulate one Earth gravity (1 g = 9.8 meters/sec^2)?"

Homework Equations



A = \frac{V^2}{R}

The Attempt at a Solution



I completed this problem, getting an answer of 5.5 RPM. Apparently I was wrong, and the answer should have been 14 RPM. I asked my instructor about it, and he showed me the calculations used to get 14 RPM, but it still didn't quite make sense to me.

Here's the process my instructor used to solve the problem:
Circumference is C = 2∏(30) = 188 meters.

1 rpm is like rotating 1 full circular rotation every minute, so 188/60 = 3.1 meters/sec.

Then V = 3.1 meters/sec x RPM.

Then A = (3.1 RPM)^2/188 = 0.05 x rpm^2.

So: 9.8 = 0.05rpm^2

RPM = 14

--

Here's my process:
A = 9.8 (m)/(s^2)
R = 30 m
V = √(AR)
V = 17.15 m/s

1 revolution = circumference = 2∏30 m
[1 revolution/(2∏30 m)] * [60s/1 min] (1 rev is equal to 2π30m and sixty seconds is equal to one minute)
V = (17.15 m/s)/∏ RPM
V = 5.5 RPM

--

I realize, of course, that we both used different methods to get the answer. I thought I did it wrong, so I solved the problem again, using his method, to try to get the correct answer. He used 188m for the radius component when solving for A=V^2/R, but when I used 30m I got an answer of 5.5RPM. The radius, 30m, should be used in that equation, not 188m, right?

I would greatly appreciate any help in understanding this problem. I can't tell where/how I went wrong in solving it.
 
Physics news on Phys.org
jwlgrant said:

Homework Statement



Here's the problem: "On a journey to Mars, one design is to have a section of the spacecraft rotate to simulate gravity. If the radius of this section is 30 meters, how many RPMs must it rotate to simulate one Earth gravity (1 g = 9.8 meters/sec^2)?"

Homework Equations



A = \frac{V^2}{R}

The Attempt at a Solution



I completed this problem, getting an answer of 5.5 RPM. Apparently I was wrong, and the answer should have been 14 RPM. I asked my instructor about it, and he showed me the calculations used to get 14 RPM, but it still didn't quite make sense to me.

Here's the process my instructor used to solve the problem:
Circumference is C = 2∏(30) = 188 meters.

1 rpm is like rotating 1 full circular rotation every minute, so 188/60 = 3.1 meters/sec.

Then V = 3.1 meters/sec x RPM.

Then A = (3.1 RPM)^2/188 = 0.05 x rpm^2.
Why is he dividing by 188 (circumference)?? Should be 30.

So: 9.8 = 0.05rpm^2

RPM = 14

--

Here's my process:
A = 9.8 (m)/(s^2)
R = 30 m
V = √(AR)
V = 17.15 m/s

1 revolution = circumference = 2∏30 m
[1 revolution/(2∏30 m)] * [60s/1 min] (1 rev is equal to 2π30m and sixty seconds is equal to one minute)
V = (17.15 m/s)/∏ RPM
V = 5.5 RPM

--

I realize, of course, that we both used different methods to get the answer. I thought I did it wrong, so I solved the problem again, using his method, to try to get the correct answer. He used 188m for the radius component when solving for A=V^2/R, but when I used 30m I got an answer of 5.5RPM. The radius, 30m, should be used in that equation, not 188m, right?

I would greatly appreciate any help in understanding this problem. I can't tell where/how I went wrong in solving it.
You are right and the instructor is wrong.

It is easier to use Ac = ω2r; so \omega = \sqrt{A/r} where ω is the angular speed in radians/sec.

Letting RPM = 60ω/2∏:

RPM = \frac{60}{2\pi}*\sqrt{A/r} = \frac{60}{2\pi}\sqrt{9.8/30} = 5.5

AM
 
Last edited:
Then A = (3.1 RPM)^2/188 = 0.05 x rpm^2.
I also agree, it must be divided by radius = 30 not circumference.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top