Scalars z such that A-zI is singular

  • Thread starter Thread starter dlevanchuk
  • Start date Start date
  • Tags Tags
    Scalars
dlevanchuk
Messages
29
Reaction score
0

Homework Statement



Consider the (2x2) symmetric matrix A = [a b; b d]

Show that there are always real scalars z such that A-zI is singular [Hint: Use quadratic formula for the roots from the previous exercise ] t^2 - (a + d)t + (ad - bc) =0

Homework Equations





The Attempt at a Solution



I just want to see if I did the problem correctly..

First, i did the whole cross multiplication, and simplified to the required quadratic formula, given in the hint

z2 - z(a + d) + (ad - b2) = 0

Then I found roots to the above equation, but thatss where I want for you guys to double check my logic..

The roots for z1/2 = ((a + b) +/- sqrt[(a - d)2+4b2])/2 (sorry for the messy equation :-S)
Since (a - d)2+4b2 is always positive, then the root for the above equation does exist, therefore there are real scalars z such that A-zI is singular...

Is that good, or should I add something else?

 
Physics news on Phys.org


dlevanchuk said:

Homework Statement



Consider the (2x2) symmetric matrix A = [a b; b d]

Show that there are always real scalars z such that A-zI is singular [Hint: Use quadratic formula for the roots from the previous exercise ] t^2 - (a + d)t + (ad - bc) =0

Homework Equations





The Attempt at a Solution



I just want to see if I did the problem correctly..

First, i did the whole cross multiplication, and simplified to the required quadratic formula, given in the hint

z2 - z(a + d) + (ad - b2) = 0

Then I found roots to the above equation, but thatss where I want for you guys to double check my logic..

The roots for z1/2 = ((a + b) +/- sqrt[(a - d)2+4b2])/2 (sorry for the messy equation :-S)
Since (a - d)2+4b2 is always positive, then the root for the above equation does exist, therefore there are real scalars z such that A-zI is singular...

Is that good, or should I add something else?
That's fine, though you should have (a+d) instead of (a+b) in your expression for the roots.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top