Series expansion of a harmonic oscillator

speedofdark8
Messages
6
Reaction score
0

Homework Statement



Use a series expansion ψ=A0x0+A1x1+A2x2+... to determine the three lowest-order wave functions for a harmonic oscillator with spring constant k and mass m, and show that the engergies are the expected values.

Homework Equations



Series expansion given above

Time independent Schrodinger's equation

The Attempt at a Solution



I am not familiar with series expansion. Asking others in the class, we got as far as what is in the picture, where we took the function for a harmonic oscillator F=-kx and substituted it for U in Schrodinger's Equation.

P0gq5.jpg
 
Last edited:
Physics news on Phys.org
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top