Show that dim(Ker(SoT))<=dim(KerT)+dim(KerS)

  • Context: MHB 
  • Thread starter Thread starter Denis99
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on proving the inequality dim(Ker(SoT)) ≤ dim(Ker(T)) + dim(Ker(S)), where SoT represents the composition of linear transformations T and S. Participants emphasize starting with Ker(T) to analyze the intersection of the range of S with Ker(T). The method involves defining W as the intersection of the range of S and Ker(T), and constructing a basis for Ker(S) to demonstrate that the combined basis spans Ker(SoT).

PREREQUISITES
  • Understanding of linear transformations and their properties
  • Familiarity with kernel and range concepts in linear algebra
  • Knowledge of basis and dimension in vector spaces
  • Experience with mathematical proof techniques
NEXT STEPS
  • Study the properties of linear transformations in finite-dimensional vector spaces
  • Learn about the relationship between kernel and range in linear algebra
  • Explore the concept of dimension in vector spaces and its implications
  • Investigate proof strategies for inequalities involving dimensions of kernels
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in understanding the properties of linear transformations and their kernels.

Denis99
Messages
6
Reaction score
0
Like in the topic, the goal is to show that def(SoT) <= def(T)+def(S) (where def(P)=dim(KerP), T,S:V -> V are linear transformations and V<infinity).
Unfortunately Ker(SoT) isn`t a subset of Ker(S)+Ker(T), so I try to solve this problem starting with that Ker(T) is subset of Ker(SoT), but I don`t know if this is a good idea.
 
Last edited:
Physics news on Phys.org
Denis99 said:
Like in the topic, the goal is to show that def(SoT) <= def(T)+def(S) (where def(P)=dim(KerP), T,S:V -> V are linear transformations and V<infinity).
Unfortunately Ker(SoT) isn`t a subset of Ker(S)+Ker(T), so I try to solve this problem starting with that Ker(T) is subset of Ker(SoT), but I don`t know if this is a good idea.
Hi Denis99, and welcome to MHB.

Yes, definitely start with $\ker(T)$. You need to know how much of the range of $S$ lies in $\ker(T)$. So let $\def\ran{\operatorname{ran}}W = \ran(S) \cap\ker(T)$, and let $k = \dim(W)$. (Notice that $k\leqslant \dim(\ker T)$.) Choose a basis $\{w_1,\ldots,w_k\}$ for $W$. For $1\leqslant i\leqslant k$, choose $v_i\in V$ with $Sv_i = w_i$ (this is possible because each $w_i$ is in the range of $S$).

Now let $\{u_1,\ldots,u_r\}$ be a basis for $\ker(S)$, where $r = \dim(\ker S)$. Show that the set $\{u_1,\ldots,u_r,v_1,\ldots,v_k\}$ spans $\ker(S\circ T)$ in order to get your result.
 
Opalg said:
Hi Denis99, and welcome to MHB.

Yes, definitely start with $\ker(T)$. You need to know how much of the range of $S$ lies in $\ker(T)$. So let $\def\ran{\operatorname{ran}}W = \ran(S) \cap\ker(T)$, and let $k = \dim(W)$. (Notice that $k\leqslant \dim(\ker T)$.) Choose a basis $\{w_1,\ldots,w_k\}$ for $W$. For $1\leqslant i\leqslant k$, choose $v_i\in V$ with $Sv_i = w_i$ (this is possible because each $w_i$ is in the range of $S$).

Now let $\{u_1,\ldots,u_r\}$ be a basis for $\ker(S)$, where $r = \dim(\ker S)$. Show that the set $\{u_1,\ldots,u_r,v_1,\ldots,v_k\}$ spans $\ker(S\circ T)$ in order to get your result.

Thank you very much! That solution is brilliant :)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
11K
  • · Replies 8 ·
Replies
8
Views
3K