MHB Show that dim(Ker(SoT))<=dim(KerT)+dim(KerS)

  • Thread starter Thread starter Denis99
  • Start date Start date
Click For Summary
The discussion focuses on proving that the dimension of the kernel of the composition of two linear transformations, SoT, is less than or equal to the sum of the dimensions of their individual kernels, T and S. It is suggested to start with the kernel of T and analyze how much of the range of S intersects with it. A specific approach involves defining a subspace W that represents this intersection and constructing a basis for it. The final goal is to demonstrate that the combined basis from the kernels of S and the intersection spans the kernel of the composition SoT. The proposed method is well-received as an effective solution.
Denis99
Messages
6
Reaction score
0
Like in the topic, the goal is to show that def(SoT) <= def(T)+def(S) (where def(P)=dim(KerP), T,S:V -> V are linear transformations and V<infinity).
Unfortunately Ker(SoT) isn`t a subset of Ker(S)+Ker(T), so I try to solve this problem starting with that Ker(T) is subset of Ker(SoT), but I don`t know if this is a good idea.
 
Last edited:
Physics news on Phys.org
Denis99 said:
Like in the topic, the goal is to show that def(SoT) <= def(T)+def(S) (where def(P)=dim(KerP), T,S:V -> V are linear transformations and V<infinity).
Unfortunately Ker(SoT) isn`t a subset of Ker(S)+Ker(T), so I try to solve this problem starting with that Ker(T) is subset of Ker(SoT), but I don`t know if this is a good idea.
Hi Denis99, and welcome to MHB.

Yes, definitely start with $\ker(T)$. You need to know how much of the range of $S$ lies in $\ker(T)$. So let $\def\ran{\operatorname{ran}}W = \ran(S) \cap\ker(T)$, and let $k = \dim(W)$. (Notice that $k\leqslant \dim(\ker T)$.) Choose a basis $\{w_1,\ldots,w_k\}$ for $W$. For $1\leqslant i\leqslant k$, choose $v_i\in V$ with $Sv_i = w_i$ (this is possible because each $w_i$ is in the range of $S$).

Now let $\{u_1,\ldots,u_r\}$ be a basis for $\ker(S)$, where $r = \dim(\ker S)$. Show that the set $\{u_1,\ldots,u_r,v_1,\ldots,v_k\}$ spans $\ker(S\circ T)$ in order to get your result.
 
Opalg said:
Hi Denis99, and welcome to MHB.

Yes, definitely start with $\ker(T)$. You need to know how much of the range of $S$ lies in $\ker(T)$. So let $\def\ran{\operatorname{ran}}W = \ran(S) \cap\ker(T)$, and let $k = \dim(W)$. (Notice that $k\leqslant \dim(\ker T)$.) Choose a basis $\{w_1,\ldots,w_k\}$ for $W$. For $1\leqslant i\leqslant k$, choose $v_i\in V$ with $Sv_i = w_i$ (this is possible because each $w_i$ is in the range of $S$).

Now let $\{u_1,\ldots,u_r\}$ be a basis for $\ker(S)$, where $r = \dim(\ker S)$. Show that the set $\{u_1,\ldots,u_r,v_1,\ldots,v_k\}$ spans $\ker(S\circ T)$ in order to get your result.

Thank you very much! That solution is brilliant :)
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
11K
  • · Replies 8 ·
Replies
8
Views
3K