Show that: Translator operator can be expressed in terms of

  • Thread starter Thread starter Diomarte
  • Start date Start date
  • Tags Tags
    Operator Terms
Diomarte
Messages
24
Reaction score
0

Homework Statement



The translation operator T(a) is defined to be such that: T(a)ψ(x) = ψ(x+a)
Show that:
T(a) can be expressed in terms of the operator p = -iħ d/dx
and T(a) is unitary.

Homework Equations



T(a)ψ(x) = ψ(x+a)
p = -iħ d/dx

The Attempt at a Solution



I honestly have no idea how to start this expression, I figured there may be some way of doing it in a Taylor's expansion maybe, but I'm not sure how that would work, and that's the only guess I have on how to start this. Could anybody possibly give me some direction on where to start, please? Thank you very much.
 
Physics news on Phys.org
Enough experience in physics will teach you that Taylor expansions can do anything ;-) In particular, whenever you have a parametrized operator like this, it's usually useful to consider small values of the parameter. So try assuming that a is very small, write out the series expansion for whatever needs to be expanded, and see where that takes you.
 
Ok, I seem to have figured that part out, now my second part is to show that T(a) is Unitary.
Thank you very much for your help, and hopefully showing that T(a) is unitary shouldn't be terrible difficult since if I'm correct I've got I think the correct results came out to be T(a)ψ(x) = exp(iap/ħ)ψ(x) = f(x+a)
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top