Single circular loop of wire filled with a uniform magnetic

AI Thread Summary
The discussion focuses on a physics problem involving a circular loop of wire in a changing magnetic field. The magnetic field is defined by the equation B(t) = B0 exp{-t / 2.15 sec}, and the task is to find the value of B0 when the induced emf is 1.00 V at t = 0.25 sec. The user attempts to apply the formulas for magnetic flux (Φ = BA) and induced electric field (E = -dΦB/dt) to solve the problem. They express uncertainty about their approach and seek confirmation on whether they are using the correct formulas for part (a) of the question. Clarification on the application of these equations is needed to ensure accurate calculations.
yekidota
Messages
3
Reaction score
0

Homework Statement


The figure to the right shows a single circular loop of wire
filled with a uniform magnetic field pointing into the page
The radius of the loop is R = 1.75 cm. The magnitude
of the magnetic field in the loop is changing
according to B(t) = B0 exp{-t / 2.15sec}
(a) what is the value of B0 if at t = 0.25 sec
the magnitude of the induced emf in
the loop is 1.00 V?
(b) what is the magnitude of the induced electric field inside
the loop at a distance

Homework Equations


Φ=BA
E=dΦB/dt

The Attempt at a Solution



Φ=BA = (B0^-t/2.15)π1.75^2

E=dΦB/dt =-AdB/dt=-(π1.75^2)((d(B0^(-0.25/2.15)))/dt
 
Physics news on Phys.org
am i using the right formula?
I wanted to know if I am on the right track for a)
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top