Smooth rolling motion - conservation of energy?

AI Thread Summary
Mechanical energy is conserved for a ball or cylinder rolling smoothly along a path, provided there are no dissipative forces like friction or air resistance. In a closed system with perfect rolling (without slipping), the total mechanical energy remains constant, as static friction does not perform work. The discussion highlights that while static friction is present, it does not contribute to energy loss, allowing for conservation of energy. The relationship between the rolling object and the surface at the contact point is crucial for understanding this phenomenon. Overall, the conservation of mechanical energy holds true under these ideal conditions.
stfz
Messages
35
Reaction score
0
Member advised to use the homework template for posts in the homework sections of PF.
This isn't about a specific physics problem, but rather a question:
Given I have a ball or cylinder rolling smoothly along some path, is it generally true that mechanical energy is conserved?
I.e. if ##E_mech = K+U = K_{trans} + K_{rot} + U##, then ##\Delta E_mech = 0##?

I have been able to formulate a proof for a cylinder rolling down an inclined plane, with a change in height ##\Delta h##. I've been able to show that, at the bottom, ##K_{rot}+K_{trans} = mgh##.

But I just wanted to check that this is generally true along any path (e.g. curved paths), given that the rolling is always smooth? And also, are there any caveats here where this assertion doesn't work?

Thanks!
 
Physics news on Phys.org
stfz said:
But I just wanted to check that this is generally true along any path (e.g. curved paths), given that the rolling is always smooth? And also, are there any caveats here where this assertion doesn't work?

The total amount of mechanical energy, in a closed system in the absence of dissipative forces (e.g. friction, air resistance), remains constant.
so, if you have conditons of perfect rolling (without slipping) the energy should be conserved.
 
Hmm. I was under the impression that the static friction present was a friction force and hence the there are non-conservative forces at work.
However, now that you mention it, I realize that static friction, by definition, can do no work. Hence there are no non-conservative forces doing work per se (although there are non-conservative forces present!)

Is that why mechanical energy is conserved?
 
What is the relative motion between the smoothly rolling object and the surface along which it is rolling at the point / line of contact?

The answer to that plus an equation for energy dissipated by static friction between two surfaces should provide you the insight you are looking for.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top