(Solid State) fraction of electrons within kT of fermi level

wdednam
Messages
33
Reaction score
1

Homework Statement



Show that the fraction of electrons within kT of the fermi level is equal to 3kT/2Ef, if D(E) = E^1/2.

Homework Equations



f(E) = 1 / ( exp(E-Ef)/kT + 1 ) fermi distribution

N = integral from 0 to inf of D(E)f(E)dE = total no. of electrons


The Attempt at a Solution



I'm really lost with this problem.

I'm not even sure if I have to solve it at T = 0, in which case I tried to calculate n = integral from Ef - kT to Ef of D(E)f(E)dE over N = integral from 0 to Ef of D(E)f(E)dE with f(E) = 1,

OR at a temperature T which is finite such that now I calculate n = integral from Ef - kT to Ef + kT of D(E)f(E)dE over N as defined in "relevant equations" above. In the first case I get a horrible algebraic expression which does not simplify to what I'm supposed to get and in the second case I get integrals I don't know how to evaluate and can't even calculate using mathcad.

Any hints would be highly appreciated.

Thanks!
 
Physics news on Phys.org
Okay, I managed to get the answer.

For those who are interested, the calculation should be done at T = 0. Since the electrons are within kT of Ef, and Ef >> kT, the density of states is just D(Ef) = 3N/2Ef which is constant so it can come out of the integral in the numerator (the integral from Ef - kT to Ef + kT of D(E)f(E)dE). Remember that f(E) = 1 for E < Ef and 0 for E > Ef at T = 0.

To get the final answer just divide the result of this integral by N, the total number of electrons.

Cheers.
 
  • Like
Likes monica.muradya
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top